

This file is an uncorrected accepted manuscript (i.e., postprint). Please be aware that this version will change during the production process. This postprint will be removed once the paper is officially published. All legal disclaimers that apply to the journal pertain.

Submitted: 2 July 2025 - **Accepted:** 18 December 2025 - **Posted online:** 19 December 2025

To link and cite this article:

doi: 10.5710/AMGH.18.12.2025.3656

PLEASE SCROLL DOWN FOR ARTICLE

1 **POSTCRANIAL PNEUMATICITY IN ABELISAURIDS (DINOSAURIA:
2 THEROPODA): THE CASES OF *TRALKASAURUS CUYI*, *SKORPIOVENATOR*
3 *BUSTINGORRYI* AND *CARNOTAURUS SASTREI***

5 VIRGINIA, ZURRIAGUZ¹ AND MAURICIO A. CERRONI²

6 1-Instituto de Paleobiología y Geología (UNRN-CONICET). Avenida Roca 1242,
7 R8332, General Roca, Provincia de Río Negro, Argentina. vlzurriaguz@unrn.edu.ar

9 2- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo
10 Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET) Ángel
11 Gallardo 470, C1405DJR, CABA, Argentina. mauricio.cerroni@gmail.com

12
13 Running Header: ZURRIAGUZ AND CERRONI. POSTCRANIAL PNEUMATICITY
14 IN ABELISAURIDS

15 Short description: Analysis of the postcranial pneumaticity of abelisaurids, in which a
16 certain degree of variation was found in the caudal vertebrae

17
18 Corresponding author: Virginia Zurriaguz. E-mail: vlzurriaguz@unrn.edu.ar

19
20 **Abstract.** Abelisaurids were a group of mostly Gondwanan theropod dinosaurs, whose
21 anatomy and phylogeny are well known. However, this is not the case for some
22 paleobiological aspects such as postcranial pneumaticity. In this work, postcranial
23 pneumaticity patterns were analyzed in three abelisaurids: *Tralkasaurus cuyi*,
24 *Skorpiovenator bustingorryi*, and *Carnotaurus sastrei*, which were compared with other
25 abelisaurids and closely related groups (e.g., noasaurids). For this purpose, both naked-
26 eye observations and CT scans of vertebral material (dorsal and caudal), as well as
27 cervical and dorsal ribs were considered. The results obtained show that *Tralkasaurus*
28 and *Skorpiovenator* have pneumatized dorsal vertebrae, like almost all the analyzed taxa
29 (e.g., *Majungasaurus crenatissimus*). The same occurs with the ribs of both
30 *Skorpiovenator* and *Carnotaurus* and other taxa (e.g., *Niebla antiqua*). In the case of
31 *Carnotaurus*, only the cervical ribs were scanned, which showed camerae, while the

32 dorsal ribs of *Skorpiovenator* showed a possible pneumatic space. The greatest variation
33 is found in the caudal vertebrae, where *Skorpiovenator* presents pneumatization in the
34 neural arches, while most abelisaurids have apneumatic caudal vertebrae, with the
35 exception of *Aucasaurus garridoi* and an undetermined abelisaurid from Chubut. These
36 results are unexpected, since the caudal vertebrae of abelisaurids were historically
37 considered apneumatic, and highlight the need to delve deeper into this type of studies
38 within this fascinating group of theropods.

39 **Keywords.** Ceratosauria, camellated tissue, ribs, presacral vertebrae, caudal vertebrae,
40 CT scans, Cretaceous, Patagonia

41 **Resumen.** NEUMATICIDAD POSTCRANEANA EN ABELISÁURIDOS
42 (DINOSAURIA: THEROPODA): LOS CASOS DE *TRALKASAURUS CUYI*,
43 *SKORPIOVENATOR BUSTINGORRYI* Y *CARNOTAURUS SASTREI*. Los abelisáuridos
44 fueron un grupo de terópodos, principalmente gondwánicos, cuya anatomía y filogenia
45 son bien conocidas. Sin embargo, este no es el caso de algunos aspectos
46 paleobiológicos, como la neumática postcraneana. En este trabajo se analizaron los
47 patrones de neumática postcraneal en tres abelisáuridos: *Tralkasaurus cuyi*,
48 *Skorpiovenator bustingorryi* y *Carnotaurus sastrei*, los cuales fueron comparados con
49 otros abelisáuridos y grupos relacionados (p. ej., noasáuridos). Para este propósito, se
50 consideraron tanto observaciones a ojo desnudo como tomografías computadas de
51 material vertebral (dorsal y caudal) así como de costillas cervicales y dorsales. Los
52 resultados obtenidos muestran que *Tralkasaurus* y *Skorpiovenator* presentan vértebras
53 dorsales neumatizadas, como casi todos los taxones analizados (p. ej., *Majungasaurus*
54 *crenatissimus*) y lo mismo ocurre con las costillas de *Skorpiovenator*, *Carnotaurus* y
55 otros taxones (p. ej., *Niebla antiqua*). La mayor variación fue hallada en las vértebras
56 caudales, donde *Skorpiovenator* presenta arcos neurales neumatizados, mientras que la

57 mayoría de los abelisáuridos presentan vértebras caudales aneumáticas, con la
58 excepción de *Aucasaurus garridoi* y un abelisáurido indeterminado de Chubut. Estos
59 resultados son inesperados, dado que las vértebras caudales de los abelisáuridos se
60 consideraban históricamente aneumáticas, por lo cual resalta la necesidad de
61 profundizar en este tipo de estudios dentro de este fascinante grupo de terópodos.

62 **Palabras clave.** Ceratosauria, tejido camelado, costillas, vértebras presacras, vértebras
63 caudales, tomografías computadas, Cretácico, Patagonia

64

65 INTRODUCTION

66 Abelisaurids are a group of non-avian theropods, which inhabited mostly Gondwanan
67 landscapes and whose records date back from the Valanginian (lower Cretaceous) until
68 the Maastrichtian (upper Cretaceous), with the most abundant record of Argentinean
69 Patagonia (Bonaparte 1991; Carrano and Sampson 2008; Novas 2009; Novas et al.
70 2013; Zaher et al. 2020). Abelisaurids present various sizes (from about 4 meters to
71 about 8-9 meters) (Novas et al. 2013; Canale et al. 2016) and have some particular
72 characteristics such as highly sculptured skulls with high snouts and extremely small
73 forelimbs (Bonaparte and Novas 1985; Bonaparte 1991; Novas 1997; Coria et al. 2002;
74 Canale et al. 2009, 2016; Carrano and Sampson 2008; Pol and Rauhut 2012). To this
75 day, both anatomy and phylogenetic relationships of abelisaurids are well known and
76 have been widely discussed (Bonaparte 1985; Sampson et al. 1998; Coria et al. 2002;
77 Canale et al. 2009; Farke and Sertich 2013; Filippi et al. 2016; Zaher et al. 2020; Baiano
78 et al. 2023; Pol et al. 2024), little is known about some of their paleobiological aspects,
79 particularly those related to postcranial pneumaticity (PSP).

80 Postcranial pneumaticity is currently present only in birds (Duncker 1971, O'Connor
81 2006), but has spread within the clade Ornithodira, being found in both pterosaurs and

82 saurischian dinosaurs (Britt 1993; Wedel 2009; Benson et al. 2011). PSP is the invasion
83 of epithelial extensions called pneumatic diverticula within bones, whose origin came
84 from the air sacs connected to the lungs (King 1966; Duncker 1971). This invasion
85 occurs through foramina that connect to internal cavities called camerae or camellae
86 (Britt 1993; Wedel 2003a,b; O'Connor 2006).

87 Although PSP is widely distributed within Saurischia, it has been studied much more in
88 sauropods than in non-avian theropods (Britt 1993; O'Connor 2007; Sereno et al. 2008;
89 Benson et al. 2011; Watanabe et al. 2015; Aranciaga-Rolando et al. 2020; Gianechini
90 and Zurriaguz 2021; Aureliano et al. 2024; Windholz et al. 2025).

91 This study aims to describe the postcranial pneumaticity (PSP) of three distinct
92 abelisaurid theropods (*Tralkasaurus cuyi* Cerroni et al. 2020, *Skorpiovenator*
93 *bustingorryi* Canale et al. 2009 and *Carnotaurus sastrei* Bonaparte 1985). These results
94 will expand not only the knowledge about PSP in theropods generally, and particularly
95 the Abelisauridae, a group for which the distribution of this characteristic remains
96 barely documented.

97

98 **Institutional Abbreviations.** **CPP**, Centro de Pesquisas Paleontológicas “Llewellyn Ivor
99 Price,” Peirópolis, Brazil; **DGM**, Departamento Nacional da Produçao Mineral, Museu
100 de Cencias da Terra, Rio de Janeiro, Brazil; **FMNH** Field Museum of Natural History,
101 Chicago; United States of America; **FSAC**, Faculté des Sciences Aïn Chock, Université
102 Hassan II, Casablanca, Morocco; **MACN-Pv-CH**, Museo Argentino de Ciencias
103 Naturales “Bernardino Rivadavia”, Colección Chubut, Ciudad Autónoma de Buenos
104 Aires, Argentina; **MCF**, Museo “Carmen Funes”, Plaza Huincul, Argentina; **MCT**,
105 Museo de Ciencias da Terra, Rio de Janeiro, Brazil; **MEB (MMCH)**, Museo “Ernesto
106 Bachmann”, El Chocón, Argentina; **MEF**, Museo Egidio Feruglio, Trelew, Argentina;

107 **MHNA**, Muséum d'Histoire Naturelle d'Aix-en-Provence, France; **MHNH**, Muséum
108 d'histoire naturelle du Havre, Havre, France; **MN**, Museu Nacional, Universidade
109 Federal do Rio de Janeiro, Rio de Janeiro, Brazil; **MPCA**, Museo Provincial "Carlos
110 Ameghino", Cipolletti, Argentina; **MPCN**, Museo Patagónico de Ciencias Naturales,
111 General Roca, Argentina; **MPM**, Museo Padre Manuel Molina, Río Gallegos, Santa
112 Cruz, Argentina; **MPMA**, Museu de Paleontologia de Monte Alto, São Paulo, Brazil;
113 **MUCPv**, Museo de la Universidad Nacional del Comahue, Neuquén, Argentina; **NMV**,
114 National Museum of Victoria, Melbourne, Australia; **PIN**, Borissiak Paleontological
115 Institute of the Russian Academy of Sciences, Moscow, Russia; **UA**, University of
116 Antananarivo, Antananarivo, Madagascar; **UNPSJB**, Universidad Nacional de la
117 Patagonia San Juan Bosco, Colección Paleovertebrados, Chubut, Argentina
118

119 **MATERIALS AND METHODS**

120 **Materials**

121 The materials examined in this study include one posterior dorsal vertebra and three
122 dorsal transverse process of *Tralkasaurus cuyi* (MPCA Pv-815; see Cerroni et al., 2020),
123 two posterior dorsal vertebrae (10th and 11th), two anterior caudal vertebrae (1st and
124 3rd), four dorsal ribs of *Skorpiovenator bustingorryi* (MMCH-PV 48; see Canale et al.,
125 2008) and three cervical (5th, 8th and 10th) and seven dorsal ribs of *Carnotaurus sastrei*
126 (MACN-Pv-CH 894; see Bonaparte et al. 1990).

127 **Methods**

128 Pneumatic characters were described first-hand encompassing both external
129 observations and internal morphology. The internal structure was described according to
130 the terminologies of Britt (1993) and Wedel (2003a,b). Two of the three taxa were
131 tomographed in Neuquén city: *Skorpiovenator* and *Tralkasaurus*. The CT scans were

132 performed in Policlínico de Neuquén, using a tomograph GE® BrightSpeed. In both
133 cases, the slices presented 0.625 mm of separation and 120 kV. In the case of
134 *Carnotaurus*, the CT scans were performed at Maimonides University, with a slice
135 thickness of 0.8 mm and 130 kV. The digital work of the CT scans was carried out with
136 the following software: 3D Slicer v5.8 (Fedorov et al. 2012) to obtain improved and
137 visualize three-dimensional models (exported as .stl files) and Adobe PS 2018 for image
138 creation.

139 Also, comparisons were made with other abelisaurids by analyzing its dorsal and caudal
140 vertebrae, as well ascervical and dorsal ribs in order to compare it with the three taxa
141 studied here. Within these taxa used for comparative purposes, those in which there was
142 unambiguous evidence of postcranial pneumaticity were selected.

143 DESCRIPTION

144 **Dorsal vertebrae of *Tralkasaurus cuyi***

145 In these vertebrae, only small portions of the vertebral centra and neural arches have
146 been preserved, which present a high degree of pneumatization (Fig 1). Due to the
147 extreme deterioration of the material, external pneumatic features cannot be observed
148 (e.g., foramina with visible connection to the interior of the vertebra), while the internal
149 structure present is of camellated type and extends throughout all preserved parts of the
150 neural arch reaching the distal ends of the diapophyses and parapophyses. As for the
151 structure of the camellated tissue, the camellae are of considerable size and can be seen
152 only in the parasagittal axis, in which the camellae exhibit an arrangement that is
153 sometimes quadrangular (*i.e.*, base of the arch) and sometimes triangular or
154 subtriangular (*i.e.*, diapophysis and parapophysis, especially on their ends) (Fig. 1.4;
155 1.5; 1.6; 1.7).

156 **Dorsal vertebrae of *Skorpiovenator bustingorryi***

157 Because most dorsal vertebrae are articulated, only the 10th and 11th dorsal vertebrae
158 could be CT scanned (Fig 2.1, 2.2, 2.3 and 2.4). In this case, and possibly due to the
159 poor preservation of the material, it was not possible to appreciate any pneumatic
160 feature, beyond some structures that could have formed part of the small chambers,
161 called camellated tissue. In this case, it can be observed that the camellated tissue has
162 collapsed, preventing the recognition of camellae (Fig 2.1, 2.2, 2.3 and 2.4).

163 **Caudal Vertebrae of *Skorpiovenator bustingorryi***

164 These caudal vertebrae show, in general terms, apneumatic centra and pneumatized
165 neural arches (Fig 2.5; 2.6; 2.7 and 2.8). The neural arches are completely pneumatized,
166 especially in the transverse processes (Fig 2.5; 2.7 and 2.8). The pneumatization of the
167 neural arches is composed of small chambers that correspond to a camellated tissue
168 pattern. Due to wind erosion and root invasion, the material has been deteriorated,
169 which affected the material, preventing the identification of the precise shape of this
170 tissue. For the same reason, it was also not possible to observe pneumatic foramina that
171 would serve as a connection to the internal camellated tissue.

172 **Cervical and dorsal ribs of *Carnotaurus sastrei***

173 Both cervical and dorsal ribs, whether anterior, middle, or posterior, have a foramen
174 located between the tubercle and the capitulum. In this taxon, this foramen is oval and
175 of considerable size (approximately 3 cm), especially in the cervical ribs, where the
176 separation between tubercle and capitulum is higher. These foramina are usually, placed
177 deep inside the rib, and pneumatic camerae have been observed. (Fig 3.1; 3.2; 3.3; 3.4
178 and 3.5)

179 **External and internal structure of dorsal ribs of *Skorpiovenator bustingorryi***

180 All the ribs analyzed have a small foramen, varying in size and shape from circular to
181 oval, located between the tubercle and the capitulum (Fig 3.6; 3.7; 3.8 and 3.9)

182 In the CT scans it can be observed that there is camellated tissue possibly collapsed due
183 to poor preservation, similar to the situation of the dorsal vertebra. This camellated
184 tissue is observed near the foramen present near the tubercle and the capitulum and its
185 extension covers the most proximal portion of the rib, disappearing as the shaft becomes
186 distally laminar (Fig 3.6; 3.7; 3.8 and 3.9).

187

188 **DISCUSSION**

189 **Analyzed specimens: *Tralkasaurus*, *Skorpiovenator* and *Carnotaurus***

190 In all of them it was possible to trace pneumatic characters distributed in the different
191 portions of the analyzed body, which coincide, in part, with what was expected for this
192 group (O'Connor 2007; Benson et al. 2012; Méndez 2014). PSP was recorded
193 unambiguously in the dorsal vertebrae of *Tralkasaurus cuyi*. For *Skorpiovenator*
194 *bustingorryi* it was recorded ambiguously in the dorsal vertebrae, unambiguously in the
195 neural arches of the caudal vertebrae and unambiguously in the proximal end of the
196 dorsal ribs, while *Carnotaurus sastrei* showed internal (cervical ribs) and external
197 (dorsal ribs) pneumatic features. The most striking result is the presence of pneumaticity
198 in the caudal vertebrae of *Skorpiovenator*, since for abelisaurids the tail region is usually
199 considered as apneumatic (Benson et al. 2011; Méndez 2014)

200 **Comparison with other abelisaurids, noasaurids and *Ceratosaurus***

201 Analyzing the presence of pneumaticity in the dorsal vertebrae, we have recorded its
202 unambiguous presence in *Tralkasaurus* and, doubtfully, in *Skorpiovenator*. Previously
203 reported taxa showing pneumaticity in their dorsal vertebrae were *Niebla antiqua* where
204 camellated tissue can be seen on an isolated dorsal vertebra (Aranciaga-Rolando et al.
205 2021; Fig 4.1), *Dahalokely tokana* (UA 9855), *Xenotarsosaurus bonapartei* (UNPSJB
206 PV 184) and *Ekrixinatosaurus novasi* (Martínez et al. 1987; Ibiricu et al. 2021; Farke

207 and Sertich 2013; Calvo et al. 2004, MUCPv-294, Fig 4.2). In the last three taxa, the
208 internal pneumatic structure of the camellate type can be seen at first hand observation
209 and there are mentions to possible osteological correlates of pneumaticity, such as deep
210 fossae, which are apparently connected to the interior of the vertebrae. This was also
211 observed for various indeterminate abelisaurid remains [CPP 893, Novas et al. 2008;
212 MPCN-Pv 69, Gianechini et al. 2015 (Fig 4.3)]. The first unambiguous evidence of
213 pneumaticity comes from *Majungasaurus crenatissimus* Déperet 1896 (UA 8678;
214 FMNH PR 2100), where, due to natural fragmentation of the material, it is possible to
215 see its internal structure, which results in the presence of camellated tissue up to the last
216 dorsal vertebrae except for the last one (O' Connor 2007). This article was recently
217 supplemented by CT scans of the dorsal vertebrae of *Majungasaurus* (Aureliano et al.
218 2024), but unfortunately it is not possible to clearly see the structure and extent of
219 pneumaticity within the vertebrae due to the technique used to colorize the images by
220 such authors.

221 Regarding caudal vertebrae, those from *Skorpiovenator* showed apneumatic centra and
222 pneumatized neural arches. According to comparisons made with other abelisaurid taxa,
223 the situation of *Skorpiovenator* it is uncommon, and in fact, it does not match with any
224 of the analyzed taxa. The most common pattern found in several abelisaurids is the
225 occurrence of apneumatic caudal vertebrae, which is present in *Majungasaurus* (O'
226 Connor 2007), *Kurupi itaata* (Iori et al. 2021) (MPMA 27-0001/02), *Pycnonemosaurus*
227 *nevesi* Kellner and Campos 2002 (see in Delcourt 2017) (DGM 859-R), *Arcovenator*
228 *escotae* (Tortosa et al. 2013) (MHNA.PV.2011.12.5; MHNA.PV.2011.12.198 and .213)
229 and some remains of an undetermined abelisaurid from Cerro Barcino Formation
230 (Rauhut et al. 2003). The only abelisaurid material showing pneumatic features in a
231 mid-caudal vertebra, corresponds to an indeterminate abelisaurid from Bajo Barreal

232 Formation in the northern of Santa Cruz Province (MPM-99) (Martínez et al. 2004, see
233 Baiano et al. 2023), where camellated tissue is observed in the vertebral centrum due to
234 fragmentation of the material. Further, *Aucasaurus garridoi* Coria et al. 2002 (MCF-
235 PVPH-236) shows caudal pneumaticity, which affected vertebral centra and neural
236 arches, extending at least up to the 13th caudal vertebra (Baiano et al. 2023). Although
237 *Skorpiovenator* also presents pneumaticity on its caudal vertebrae, this only affects the
238 neural arches and this pattern was not recorded in the sample of analyzed abelisaurids.
239 Finally, considering both the cervical and dorsal ribs, it is possible to see that in both
240 *Carnotaurus* and *Skorpiovenator*, there are foramina closely placed to the proximal rib
241 area, mostly over the lamina between the tubercle and the capitulum. Unfortunately, the
242 poor preservation of *Skorpiovenator* prevented the pneumatic pattern from being
243 properly recognized. A similar situation exists for *Carnotaurus* whose current
244 preservation prevents tomography. Of all taxa analyzed, only *Niebla* preserves dorsal
245 ribs where it is possible to visualize a pattern of large spaces within the tubercle and
246 capitulum area (fig 8 in Aranciaga-Rolando et al. 2021), with a camerata structure.
247 *Dahalokely* was also analyzed, but its dorsal ribs are apparently apneumatic (Farke and
248 Sertich 2013).

249

250 Regarding the related taxa analyzed, only *Masiakasaurus knopfleri* Sampson et al. 2001
251 (FMNH PR 2837, FMNH PR 2481, FMNH PR 2485, *Berthasaura leopoldinae* de
252 Souza et al. 2021 (MN 7821-V) and *Ceratosaurus* Marsh 1884 provide comparable
253 material, including dorsal and caudal vertebrae, as well as ribs. Of these, internal
254 pneumatic structures are known only for *Ceratosaurus*. Its dorsal vertebrae exhibit an
255 internal pneumatization pattern intermediate between camellate and camerata structures,

256 with non-pneumatized patches (e.g., neural spine) (see fig 16 in Britt 1993). This does
257 not match to that observed in *Tralkasaurus* and, possibly, in *Skorpiovenator*.

258 Both *Masiakasaurus* and *Berthasaura* have deep foramina of possible pneumatic origin
259 in their presacral vertebrae; however, because their internal structure remains unknown,
260 we do not deem it necessary to discuss this in further detail.

261 Unlike that observed in the caudal vertebrae of *Skorpiovenator*, the caudal elements of
262 *Ceratosaurus* are apneumatic, although a single camera is strikingly present in the
263 central portion of the vertebral centra, which was described as apneumatic because it
264 lacks connection to the exterior through foramina (Britt 1993).

265 Regarding the ribs, as in *Carnotaurus*, *Masiakasaurus* has a foramen (see fig 17 in
266 Carrano et al. 2011) and, as in *Carnotaurus* and *Skorpiovenator*, the dorsal ribs of
267 *Ceratosaurus* have a large foramen (fig 15.3 in Britt 1993) in the same position as the
268 taxa analyzed here. Furthermore, as to the internal structure, the dorsal ribs are
269 pneumatized with a camerae structure (see fig 74 and 75 in Reid 1996).

270 Along with *Ceratosaurus*, noasaurids remains were also compared, although it was not
271 possible to obtain overlapping material for comparison. These materials show that
272 pneumatic tissue is already present in cervical vertebrae (Brum et al. 2018; Smyth et al.
273 2019; Poropat et al. 2020 in NMV P252004; Averianov et al. 2024 in *Kiyacursor*
274 *longipes* (PIN 329/16), consistent with a symmetrical camerae pattern (Brum et al.
275 2018; Smyth et al. 2019) or camellated tissue (Poropat et al. 2020; Averianov et al.
276 2024).

277 **Some considerations on the pneumaticity of abelisaurids**

278 Abelisaurids form a diverse clade for which anatomical studies are the most common
279 (Carrano and Sampson, 2008; Novas et al., 2013, and references therein), but even
280 though certain aspects of their biology have been addressed (e.g., neuroanatomy,

281 Paulina-Carabajal et al., 2023, and references therein) some other aspects of their
282 paleobiology have not been studied very frequently, an example of this is the case of the
283 PSP (e.g., O' Connor 2007). The analysis carried out here show the variations present in
284 different species of abelisaurids and other theropods phylogenetically linked to them.
285 According to the sample analyzed, we can affirm that the cervical vertebrae of
286 abelisaurids are pneumatized and the same occurs for indeterminate noasaurids from
287 Adamantina Formation, Brazil (Brum et al. 2016, 2018) and Ifezouane Formation,
288 Morocco (Smyth et al. 2019) and *Ceratosaurus* (Britt, 1993). However, the pneumatic
289 pattern varies among these taxa, with abelisaurids typically showing a camellated tissue
290 characteristic of late-branching forms, whereas noasaurids and early branching taxa
291 such as *Ceratosaurus*, tend to display a camerata condition . All these species show the
292 "common pattern" of pneumatization, since their presacral vertebrae are generally
293 pneumatized (Benson et al. 2011; this work).
294 The greatest variation in pneumaticity occurs in the caudal vertebrae. Depending on the
295 species examined, caudal pneumaticity may be absent (as in most abelisaurids),
296 restricted to the neural arch (e.g., *Skorpiovenator*), or developed in both the centra and
297 neural arch (e.g., *Aucasaurus*), although the latter condition is comparatively rare.
298 Moreover, taxa that are generally considered apneumatic can exhibit apparently
299 pneumatic structures, such as the presence of camerae in *Ceratosaurus*.
300 Moving away from the analysis of the diversity of pneumatization in caudal vertebrae, it
301 is interesting to highlight the case of an ilium of an indeterminate abelisaurid from
302 Adamantina Formation, Brazil (DGM 927-R) (Brum et al. 2016) that was CT-scanned
303 and showed pneumaticity with a camellate structure, and the transverse processes of
304 sacral vertebrae in the French abelisaurid *Caletdraco cottardi* (Buffetaut et al. 2024)
305 (MHNH 2024.1.1). In *Majungasaurus* (O' Connor 2007), external pneumatic features

306 were also reported on its sacral vertebrae. The most striking feature about this taxon is
307 that the last dorsal vertebra and all caudal vertebrae are apneumatic, which could
308 indicate that it is possible within this theropod group the presence of "hiatuses",
309 described as an erratic pattern of pneumatization recorded only in sauropods (Wedel and
310 Taylor 2013). Given the high disparity in pneumaticity patterns, it is important to
311 emphasize the need to deepen this type of studies in order to better understand the
312 variation and distribution of postcranial PSP this diverse group of theropods. However,
313 these results only apply for late Cretaceous abelisaurids, and it will be interesting in the
314 near future to compare its PSP pattern with that of early branching abelisaurids from
315 Jurassic period (e.g., *Eoabelisaurus*; Pol and Rauhut, 2012) or those from the lower
316 Cretaceous (e.g., *Spectrovenator*; Zaher et al., 2020).

317

318 CONCLUSIONS

319 Postcranial pneumaticity (PSP) is a little-studied aspect within abelisaurids, so a
320 comparative analysis of these features was carried out in several members of the clade,
321 using *Tralkasaurus cuyi*, *Skorpiovenator bustingorryi* and *Carnotaurus sastrei* as the
322 main case studies .

323 The dorsal vertebrae of *Tralkasaurus* shows unambiguous pneumaticity, consistent with
324 all other taxa included in our comparison, namely abelisaurids, noasaurids, and
325 *Ceratosaurus*. In *Skorpiovenator*, however, the internal structure of its dorsal vertebrae
326 is too distorted to confidently confirm pneumaticity.. Regarding the caudal vertebrae,
327 *Skorpiovenator* showed pneumatized neural arches, a condition that does not coincide
328 with any of the compared taxa, since most of them have apneumatic caudal vertebrae,
329 except for *Aucasaurus garridoi* and an undetermined abelisaurid from Chubut province.

330 Ribs across the sampled taxa usually show both external and internal pneumatic
331 features, with the exception of Dahalokely, which lacks such traits.
332 Abelisaurids display their greatest variation in the pneumaticity of the caudal series, a
333 region traditionally regarded as apneumatic. This variability underscores the importance
334 of expanding PSP studies to better understand in depth this aspect and the functional
335 implications of pneumaticity in this remarkable group of theropods.

336

337 **ACKNOWLEDGMENTS**

338 We thank to Ignacio Cerda (MPCA), Martín Ezcurra (MACN), Agustín Martinelli
339 (MACN), Belén Von Baczko (MACN), Jorge Calvo (UNComa) and Pablo Chafrat
340 (MPCN) for their willingness to allow us to view the materials presented here. We also
341 thanks to Santiago Reuil (MACN) for his useful comments about the rib cage anatomy
342 of *Carnotaurus*. Further, we are deeply Juan Canale (MEB) not only for the willingness
343 to allow access to materials, but also for sharing photos, comments on the original
344 manuscript and giving an invaluable help in the CT scanning of *Skorpiovenator*. We
345 also extend our gratitude to the staff of the Policlínico de Neuquén for allowing us to
346 perform the CT scans presented here, especially to Dra. Graciela Bianchi, Dr. Gustavo
347 Cuevas, Leonela Paredes, Ángeles Antiao and Maira Mella for performing the CT scans
348 and to Eliana Guareschi for allowing us access to the CT scanner. We would also like to
349 thank the CT scan staff at Universidad Maimónides.
350 We would like to extend our gratitude to the reviewers (Federico Gianechini and Matias
351 Motta) for their valuable recommendations to improve this work.

352

353 **REFERENCES**

354 Aranciaga-Rolando, A. M., Garcia-Marsá, J.A., & Novas, F.E. (2020). Histology and
355 pneumaticity of *Aoniraptor libertatem* (Dinosauria, Theropoda), an enigmatic mid-sized
356 megaraptoran from Patagonia. *Journal of Anatomy* 237, 741–756.

357 Aranciaga-Rolando, A. M., Cerroni, M.A., Garcia-Marsà, J.A., Motta, M.J., Rozadilla,
358 S., Brissón-Egli. F, & Novas, F.E. (2021). A new medium-sized abelisaurid (Theropoda,
359 Dinosauria) from the late cretaceous (Maastrichtian) Allen Formation of Northern
360 Patagonia. Argentina. *Journal of South American Earth Sciences* 105, 1-18

361 Aureliano, T., Almeida, W., Rasaona, M., & Ghilardi, A. (2024). The evolution of the air
362 sac system in theropod dinosaurs: Evidence from the Upper Cretaceous of Madagascar.
363 *Journal of Anatomy*. DOI: 10.1111/joa.14113

364 Averianov, A.O., Skutschas, P.P., Atuchin, A.A., Slobodin, D.A., Feofanova, O.A.,
365 & Vladimirova, O.N. (2024). The last ceratosaur of Asia: a new noasaurid from the
366 Early Cretaceous Great Siberian Refugium. *Proceedings of the Royal Society Biological
367 Sciences* 291 (2023) <https://doi.org/10.1098/rspb.2024.0537>

368 Baiano, M.A., Coria, R., Chiappe, L.M., Zurriaguz, V., & Coria, L. (2023). Osteology of
369 the axial skeleton of *Aucasaurus garridoi*: phylogenetic and paleobiological inferences.
370 *PeerJ* 11:e16236 DOI 10.7717/peerj.16236

371 Benson, R. B. J., Butler, R. J., Carrano, M. T., & O'Connor, P. M. (2011). Air-filled
372 postcranial bones in theropod dinosaurs: physiological implications and the “reptile”–
373 bird transition. *Biological Reviews* 87(1): 168-193

374 Bonaparte, J. F., & Novas, F. E. (1985). *Abelisaurus comahuensis*, n.g., n.sp.,
375 Carnosauria del Cretácico Tardío de Patagonia. *Ameghiniana*, 29 259–265

376 Bonaparte, J. F., Novas, F. E., & Coria, R. A. (1990). *Carnotaurus sastrei* Bonaparte,
377 the horned, lightly built carnosaur from the middle Cretaceous of Patagonia.
378 *Contributions in Science. Natural History Museum of Los Angeles County* 416, 1-42.

379 Bonaparte, J. F. (1991). The Gondwanan theropod families Abelisauridae and
380 Noasauridae. *Historical Biology* 5, 1–25.

381 Britt, B. B. (1993). *Pneumatic postcranial bones in dinosaurs and other archosaurs*.
382 PhD. Thesis, University of Calgary.

383 Brum, A. S., Machado, E. B., D Almeida Campos, D., & Kellner, A. W. A. (2016).
384 Morphology and internal structure of two new abelisaurid remains (Theropoda,
385 Dinosauria) from the Adamantina Formation (Turonian–Maastrichtian), Bauru Group,
386 Paraná Basin, Brazil. *Cretaceous Research* 60, 287-296.

387 Brum A. S., Machado, E. B., De Almeida Campos, D., & Kellner, A. W. A. (2018).
388 Description of uncommon pneumatic structures of a noasaurid (Theropoda, Dinosauria)
389 cervical vertebra from the Bauru Group (Upper Cretaceous), Brazil. *Cretaceous*
390 *Research* 85, 193-206.

391 Buffetaut, E., Tong, H., Girard, J., Hoyez, B., & Párraga, J. (2024). *Caletdraco*
392 *cottardi*: A New Furileusaurian Abelisaurid (Dinosauria: Theropoda) from the
393 Cenomanian Chalk of Normandy (North-Western France). *Fossil Studies* 2, 177–195.

394 Calvo, J. O., Rubilar-Rogers, D., & Moreno, K. (2004). A new abelisauridae
395 (Dinosauria: Theropoda) from northwest Patagonia. *Ameghiniana* 41, 555–563.

396 Canale, J. I., Scanferla C. A., Agnolín F. L., & Novas, F. E. (2009). New carnivorous
397 dinosaur from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid
398 theropods. *Naturwissenschaften* 96, 409-414.

399 Canale, J. I., Cerda I. A., Novas, F. E., & Haluza, A. (2016). Small-sized abelisaurid
400 (Theropoda: Ceratosauria) remains from the Upper Cretaceous of northwest Patagonia,
401 Argentina. *Cretaceous Research* 62, 18-28.

402 Carrano, M. T., & Sampson, S. (2008). The phylogeny of Ceratosauria (Dinosauria:
403 Theropoda). *Journal of Systematic Palaeontology* 6, 183-236.

404 Carrano, M. T., Loewen, M. A., & Sertich, J. J. W. (2011). New materials of
405 *Masiakasaurus knopfleri* Sampson, Carrano, and Forster, 2001, and implications for the
406 morphology of the Noasauridae (Theropoda: Ceratosauria). *Smithsonian Contributions*
407 to Paleobiology, 95: 1-64. <https://doi.org/10.5479/si.00810266.95.1>

408 Cerroni, M. A., Motta, M. J., Agnolín, F. L., Aranciaga-Rolando, A. M., Brissón-Egli,
409 F., & Novas, F. E. (2020). A new abelisaurid from the Huincul formation (Cenomanian-
410 Turonian; upper cretaceous) of Río Negro province, Argentina. *Journal of South*
411 *American Earth Sciences* 98, 102–445.

412 Coria, R. A., Chiappe, L. M., & Dingus, L. (2002). A new close relative of *Carnotaurus*
413 *sastrei* Bonaparte, 1985 (Theropoda: Abelisauridae) from the Late Cretaceous of
414 Patagonia. *Journal of Vertebrate Paleontology* 22, 460-465.

415 de Souza, G.A., Soares, M.B., Weinschütz, L.C., Wilner, E., Lopes, R.T., de Araújo,
416 O.M., & Kellner, A.W. (2021). The first edentulous ceratosaur from South America.
417 *Scientific Reports* 11 (1): doi:10.1038/s41598-021-01312-4

418 Delcourt, R. (2017). Revised morphology of *Pycnonemosaurus nevesi* Kellner &
419 Campos, 2002 (Theropoda: Abelisauridae) and its phylogenetic relationships. *Zootaxa*
420 4276(1), 1-45.

421 Depéret, C. (1896). Sur l'existence de dinosauriens sauropodes et théropodes dans le
422 Crétacé supérieur de Madagascar. *Comptes Rendus de l'Academie des Sciences* 122,
423 483–485.

424 Duncker, H., (1971). Structure of avian lungs. *Respiration Physiology* 14, 44-63

425 Farke, A. A., & Sertich, J. J. W. (2013). An abelisauroid theropod dinosaur from the
426 Turonian of Madagascar. *PLoS One* 8 (4). <https://doi.org/10.1371/journal.pone.0062047>

427 Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet J., Fillion-Robin, J. C., Pujol, S., &
428 Buatti, J. (2012). 3D Slicer as an image computing platform for the Quantitative
429 Imaging Network. *Magnetic Resonance Imaging* 30,1323–1341

430 Filippi, L.S., Méndez, A.H., Juárez Valieri, R.D., & Garrido, A.C. (2016). A new
431 brachyrostran with hypertrophied axial structures reveals an unexpected radiation of
432 latest Cretaceous abelisaurids. *Cretaceous Research* 61, 209–219

433 Ganechini, F.A., Apesteguía, S., Landini, W., Finotti, F., Juárez Valieri, R.D., &
434 Zandonai, F. (2015). New abelisaurid remains from the Anacleto Formation (Upper
435 Cretaceous), Patagonia. Argentina. *Cretaceous Research* 54, 1–16

436 Ganechini, F.A., & Zurriaguz, V.L. (2021). Vertebral pneumaticity of the paravian
437 theropod *Unenlagia comahuensis*, from the Upper Cretaceous of Patagonia. Argentina.
438 *Cretaceous Research* 127, 1–14

439 Ibíricu, L.M., Baiano, M.A., Martínez, R.D., Alvarez, B.N., Lamanna, M.C., & Casal
440 G.A. (2021). A detailed osteological description of *Xenotarsosaurus bonapartei*
441 (Theropoda: Abelisauridae): implications for abelisauroid phylogeny. *Cretaceous*
442 *Research* 124, 1-21

443 Iori, F.V., de Araújo-Júnior, H.I., Tavares, S.A.S., da Silva Marinho, T., & Martinelli,
444 A.G. (2021). New theropod dinosaur from the Late Cretaceous of Brazil improves
445 abelisaurid diversity. *Journal of South American Earth Sciences* 112, 1–15

446 Kellner, A. W., & Campos, D. D. A. (2002). On a theropod dinosaur (Abelisauria) from
447 the continental Cretaceous of Brazil. *Arquivos do Museu Nacional* 60(3), 163-170.

448 King, A.S. (1966). Structural and functional aspects of the avian lungs and air sacs.
449 *International Review of General and Experimental Zoology* 2, 171–267.

450 Marsh, O.C. (1884). On the united metatarsal bones of *Ceratosaurus*. *American Journal*
451 *of Science* 28 (164), 161–162.

452 Martínez R., Giménez, O., Rodríguez, J., & Bochatey, G. (1987). *Xenotarsosaurus*

453 *bonapartei* nov. gen. et sp. (Carnosauria, Abelisauridae), un nuevo Theropoda de la

454 Formación Bajo Barreal, Chubut, Argentina. *IV Congreso Argentino de Paleontología y*

455 *Bioestratigrafía* (pp.23-31). Buenos Aires.

456 Martínez, R.D., Novas, F., & Ambrosio, A. (2004). Abelisaurid remains (Theropoda,

457 Ceratosauria) from southern Patagonia. *Ameghiniana* 41, 577–585.

458 Méndez, A.H. (2014) The caudal vertebral series in abelisaurid dinosaurs. *Acta*

459 *Palaeontologica Polonica* 59 (1), 99–107.

460 Novas, F. E. (1997). South American dinosaurs. In Currie, P.J., Currie, P.J. (Eds.).

461 *Encyclopedia of dinosaurs* (pp. 678–689). Academic Press.

462 Novas, F. E., Souza Carvalho, I. De, Ribeiro, L. C. B., & Méndez, A. H. (2008). First

463 abelisaurid bone remains from the Maastrichtian Marilia Formation, Bauru basin,

464 Brazil. *Cretaceous Research* 29(4), 625–635.

465 Novas, F. E. (2009). *The age of dinosaurs in South America*. Indiana University Press,

466 Bloomington. Pp. 452.

467 Novas F. E., Agnolín, F. L., Ezcurra, M. D., Porfiri, J. D., & Canale, J. I. (2013).

468 Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from the

469 Patagonia. *Cretaceous Research* 45, 174–215.

470 O'Connor, P. M. (2006). Postcranial pneumaticity: an evaluation of soft tissue

471 influences on the postcranial skeleton and the reconstruction of pulmonary anatomy in

472 archosaurs. *Journal of Morphology* 267(10), 1199-1226.

473 O'Connor, P. M. (2007). The postcranial axial skeleton of *Majungasaurus crenatissimus*

474 (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. *Journal of*

475 *Vertebrate Paleontology* 27(8), 127–162.

476 Paulina-Carabajal, A., Bronzati, M., Cruzado-Caballero, P. (2023). Paleoneurology of
477 Non-avian Dinosaurs: An Overview. In: Dozo, M.T., Paulina-Carabajal, A., Macrini,
478 T.E., Walsh, S. (eds) Paleoneurology of Amniotes. Springer, Cham.
479 https://doi.org/10.1007/978-3-031-13983-3_8

480 Pol, D., & Rauhut, O. W. M. (2012). A Middle Jurassic abelisaurid from Patagonia and
481 the Early diversification of theropod dinosaurs. *Proceedings of the Royal Society
482 Biological Sciences* 279, 3170-3175.

483 Pol, D., Baiano, M., Cerný, D., Novas, F., Cerda, I., & Pittman, M. (2024). A new
484 abelisaurid dinosaur from the end Cretaceous of Patagonia and evolutionary rates
485 among the Ceratosauria. *Cladistics* 40(3), 307-356

486 Poropat, S. F., Pentland, A. H., Duncan, R. J., Bevitt, J. J., Vickers-Rich, P., & Rich, T.
487 H. (2020). First elaphrosaurine theropod dinosaur (Ceratosauria: Noasauridae) from
488 Australia, a cervical vertebra from the Early Cretaceous of Victoria. *Gondwana
489 Research* 84, 284-295.

490 Rauhut, O., Cladera, G., Vickers-Rich, P., & Rich, T. (2003). Dinosaur remains from the
491 Lower Cretaceous of the Chubut Group, Argentina. *Cretaceous Research* 24, 487-497

492 Reid, R. E. H. (1996). Bone histology of the Cleveland-Lloyd dinosaurs and of
493 dinosaurs in general. Part I: introduction to bone tissues. *Brigham Young University
494 Geology Studies* 41, 25-72.

495 Sampson, S. D., Witmer, L. M., Forster, C. A., Krause D. W., O'Connor, P. M., Dodson,
496 P., & Ravoavy, F. (1998). Predatory dinosaur remains from Madagascar: implications
497 for the Cretaceous biogeography of Gondwana. *Science* 280, 1048–1051.

498 Sereno, P. C., Martínez, R. N., Wilson, J. A., Varricchio, D. J., Alcober, O. A., &
499 Larsson, H.C.E. (2008). Evidence for avian intrathoracic air sacs in a new predatory
500 dinosaur from Argentina. *PLoS ONE* 3 <https://doi.org/10.1371/journal.pone.0003303>

501 Smyth, R. S., Ibrahim, N., Kao, A., & Martill, D. M. (2020). Abelisauroid cervical
502 vertebrae from the Cretaceous Kem Kem beds of Southern Morocco and a review of
503 Kem Kem abelisauroids. *Cretaceous Research* 108, 104330.

504 Tortosa, T., Buffetaut, E., Vialle, N., Dutour, Y., Turini, E., & Cheylan, G. (2013). A new
505 abelisaurid dinosaur from the Late Cretaceous of southern France:
506 Palaeobiogeographical implications. *Annales de Paléontologie* 100, 63–86.

507 Watanabe, A., Leone Gold, M. E., Brusatte, S. L., Benson, R. B. J., Choiniere J.,
508 Davidson, A., Norell, & M. A. (2015). Vertebral pneumaticity in the ornithomimosaur
509 *Archaeornithomimus* (Dinosauria: Theropoda) revealed by computed tomography
510 imaging and reappraisal of axial pneumaticity in Ornithomimosauria. *PLoS ONE* 10(12)
511 <https://doi.org/10.1371/journal.pone.0145168>

512 Wedel, M.J., (2003). The evolution of vertebral pneumaticity in sauropod dinosaurs.
513 *Journal of Vertebrate Paleontology* 23, 344–357.

514 Wedel, M. J. (2003). Vertebral pneumaticity, air sacs, and the physiology of sauropod
515 dinosaurs. *Paleobiology* 29, 243–255.

516 Wedel, M. J. (2009). Evidence for bird-like air sacs in saurischian dinosaurs. *Journal of*
517 *Experimental Zoology* 311A, 611-628.

518 Wedel, M.J., & Taylor, M.P. (2013) Caudal Pneumaticity and Pneumatic Hiatuses in the
519 Sauropod Dinosaurs *Giraffatitan* and *Apatosaurus*. *PLoS ONE* 8(10):
520 e78213. doi:10.1371/journal.pone.0078213

521 Windholz, G.J., Meso, J.G., Wedel, M.J., & Pittman, M. (2025) First unambiguous
522 record of pneumaticity in the axial skeleton of alvarezsaurians (Theropoda:
523 Coelurosauria). *PLoS ONE* 20(4): e0320121.https://doi.
524 org/10.1371/journal.pone.0320121

525 Zaher, H., Pol, D., Navarro, B. A., Delcourt, R., & Carvalho, A. B. (2020). An Early
526 Cretaceous theropod dinosaur from Brazil sheds light on the cranial evolution of the
527 Abelisauridae. *Comptes Rendus Palevol* 19 (6): 101-115.

528

529 **Appendices**

530 **Figure captions.**

531 **Figure 1.** Dorsal vertebra and three transverse processes of *Tralkasaurus cuyi* (MPCA
532 Pv-815). In **1**, lateral view; **2**, reconstruction of the vertebrae in lateral view, the dotted
533 line represents how the vertebrae looked; **3**, dorsal view with reconstruction of the
534 material (dot line and gray color), the straight line represents the level of the section at
535 which the CT scans were made in the following figures: 4, 5, 6 and 7; **4, 5, 6** and **7**, CT
536 scans at the level of the solid line indicated at **3** showing the camellated tissue present
537 within the vertebra and the transverse processes. Abbreviations: **tp**, transverse process.
538 Blue arrows: camellated tissue. Scale bar equals: 10 cm.

539 **Figure 2.** Dorsal and caudal vertebrae of *Skorpiovenator bustingorryi* (MMCH-PV 48)
540 and their respective CT scans. In **1**, right lateral view of 10th dorsal vertebra; **2**, anterior
541 view of 10th dorsal vertebra and its respective CT scan (below), showing the collapsed
542 internal structure; **3** and **4**, right lateral and anterior views (above) of 11th dorsal
543 vertebra and its respective CT scan (below), showing the collapsed internal structure; **5**,
544 **6**, **7** and **8** 1st and 3rd caudal vertebrae in right lateral and anterior views (above) and
545 their respective CT scans (below) showing the pneumatic vertebral centra and the
546 pneumatized neural arches. Abbreviations: **nc**, neural canal. Blue arrows: camellated
547 tissue. Scale bar equals: 5 cm.

548 **Figure 3.** Cervical ribs and their CT scans in dorsomedial views (**1-3**) and dorsal ribs in
549 dorsomedial views (**4** and **5**) of *Carnotaurus sastrei* (MACN-CH-894) and dorsal ribs

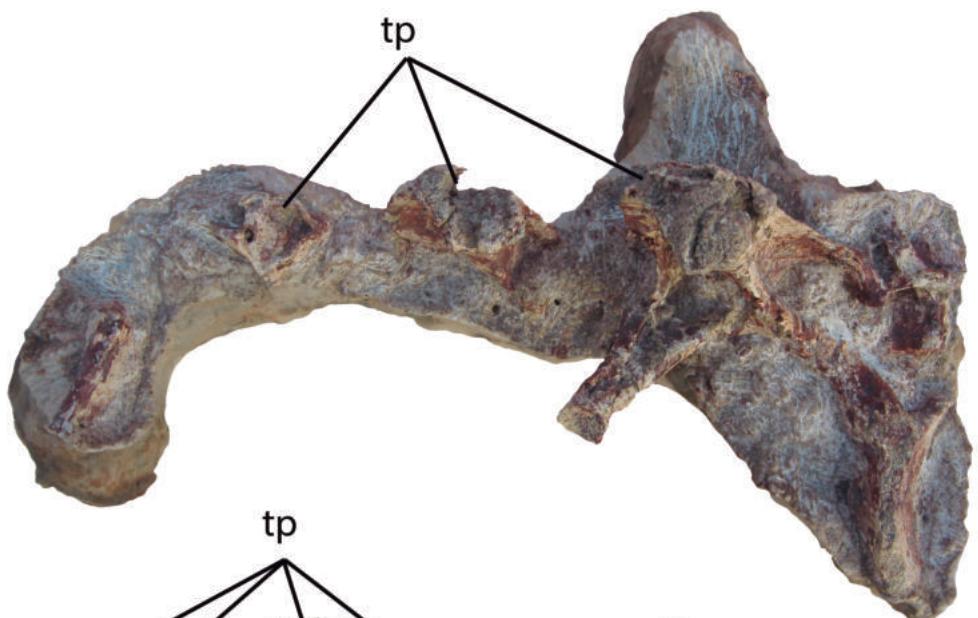
550 in medial view (6-9) of *Skorpiovenator bustingorryi* (MMCH-PV 48). In 1, 2 and 3
551 5th, 8th and 10th cervical ribs respectively showing a large foramen in the medial area
552 of the tubercle and capitulum; 1st and 2nd dorsal ribs showing a large foramen in the
553 medial area of the tubercle and capitulum. Blue arrows: camellated tissue. Scale bar
554 equals: 5 cm.

555 In 6, 7, 8 and 9, 2nd, 8th, 9th and 10th dorsal ribs showing their CT scans, where the
556 colored area represents the pneumatic space coinciding with the region where the
557 foramen is located. Scale bar equals; 10 cm.

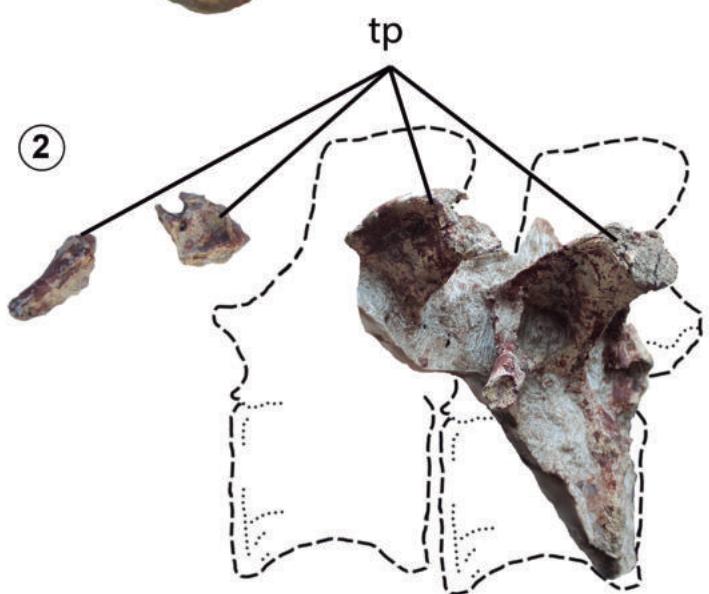
558 **Figure 4.** Dorsal vertebrae of *Niebla antiqua* (MPCN-Pv-796), *Ekrixinatosaurus*
559 *novasi* (MUC-Pv-294) and Abelisauridae indet. of Anacleto Formation (MPCN-Pv-69)
560 in Ganechini et al. 2015. In 1, lateral view of dorsal vertebral centrum of *Niebla*
561 *antiqua* showing camellated tissue; 2, lateral view of 1st dorsal vertebra of
562 *Ekrixinatosaurus novasi* showing two lateral foramina; 3, Dorsal view of dorsal
563 vertebral centrum of Abelisauridae indet. showing camellated tissue. In 1 and 3 the
564 sediment in the camellate tissue has been digitally modified to enhance contrast.

565 Abbreviations: **ct**, camellated tissue; **f**, foramen. Scale bar equals: 5 cm

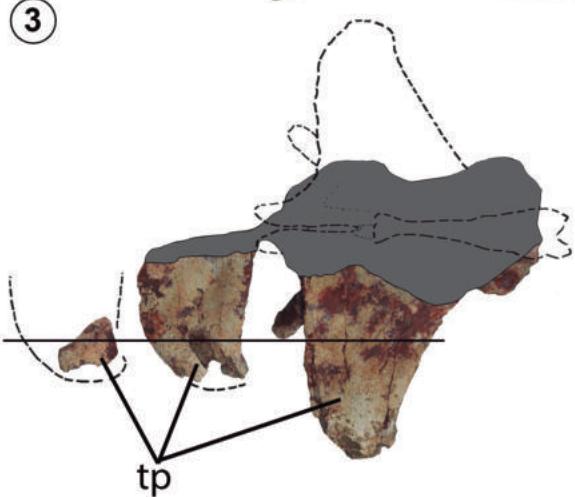
566

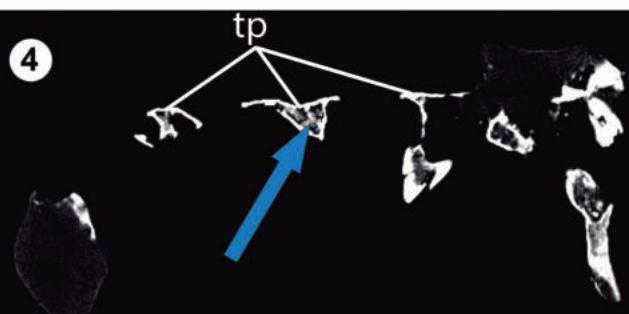

567

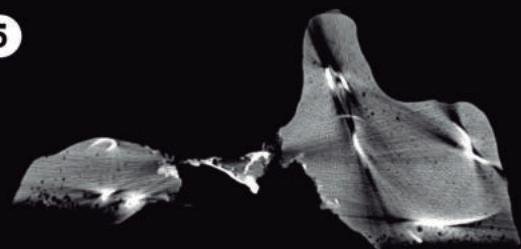
568

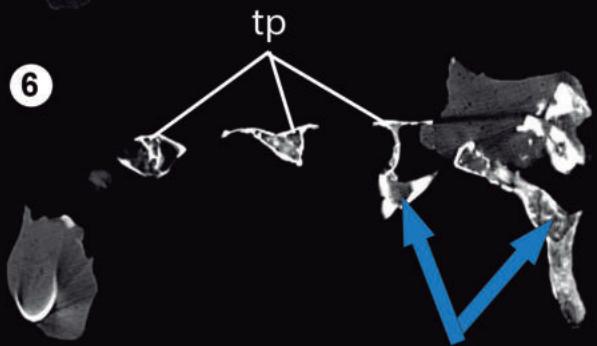

569

570

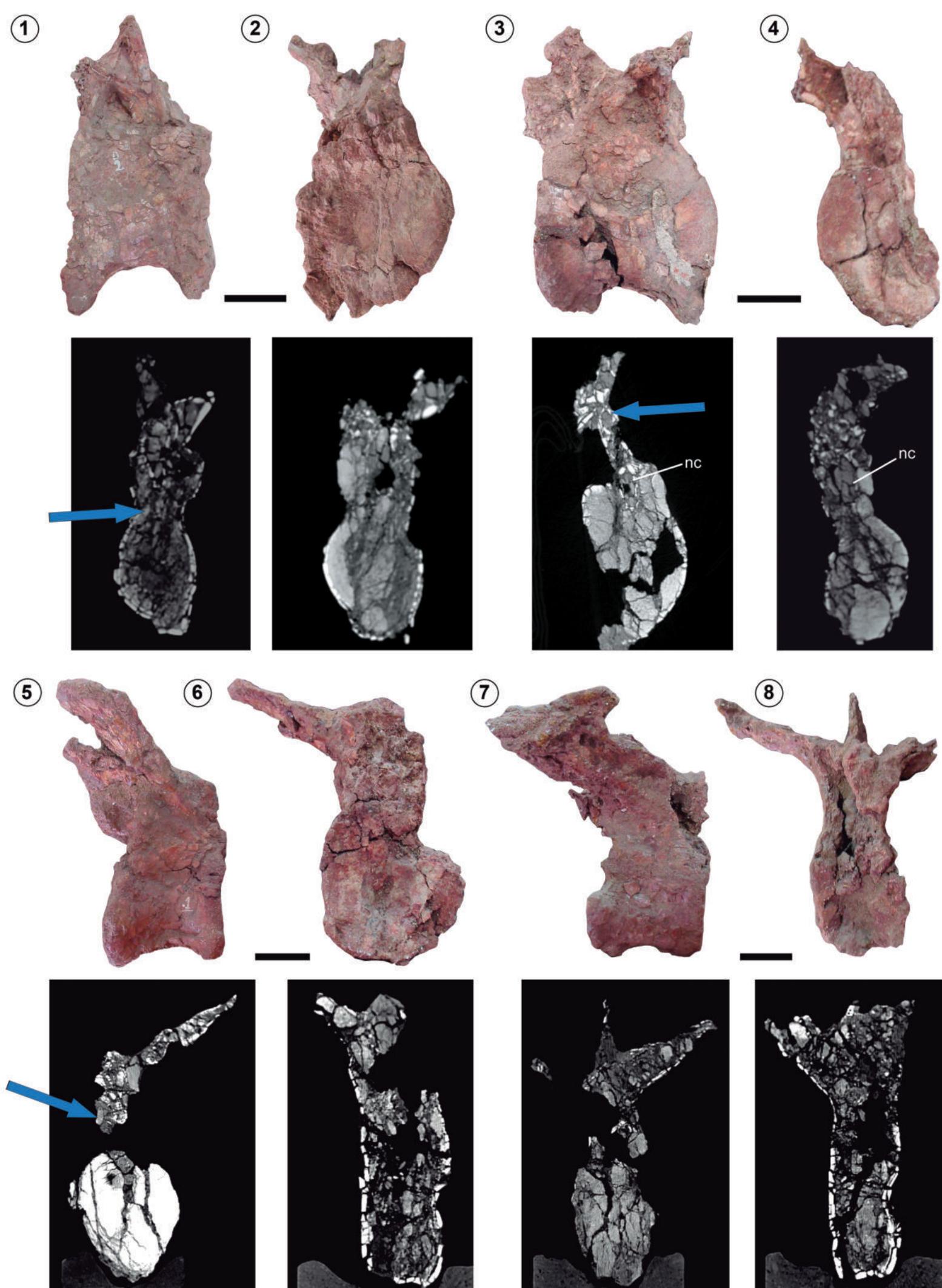

①

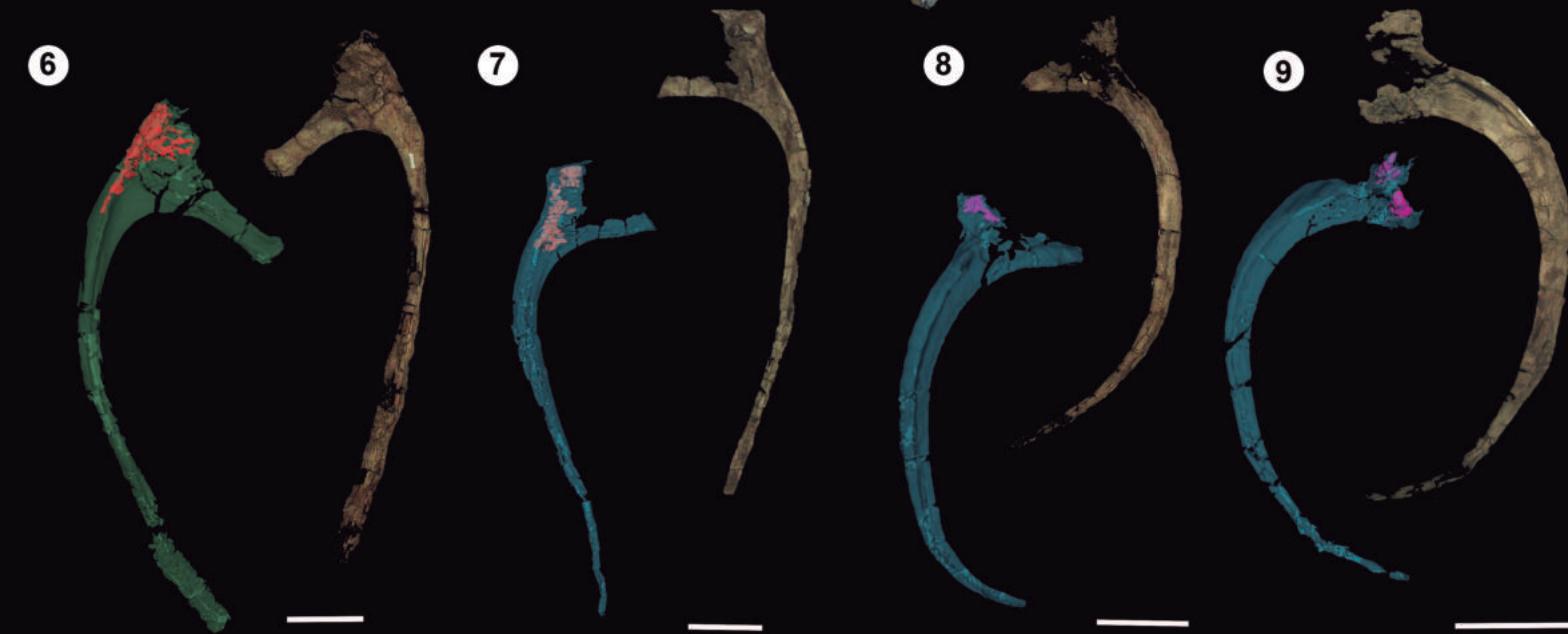
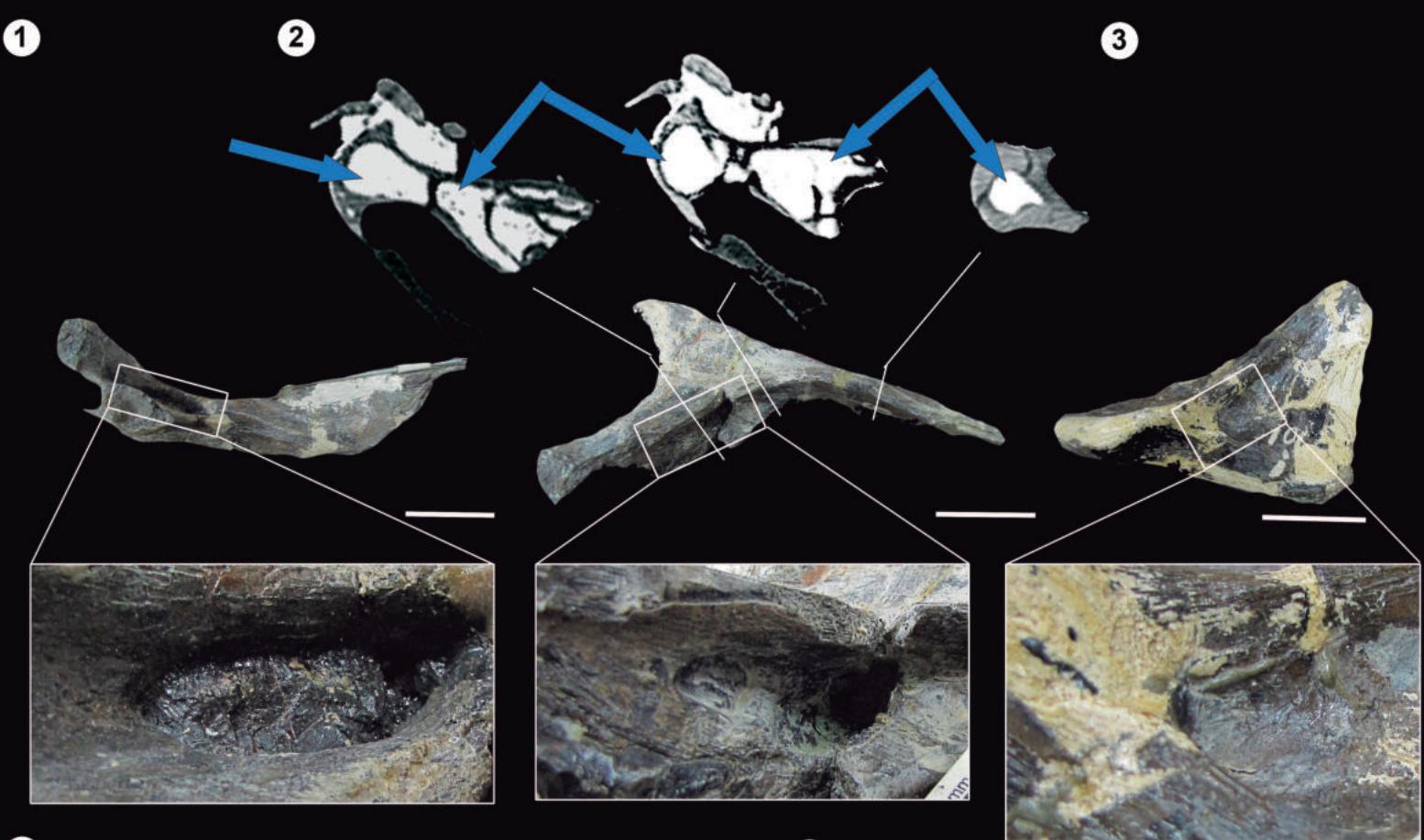

②

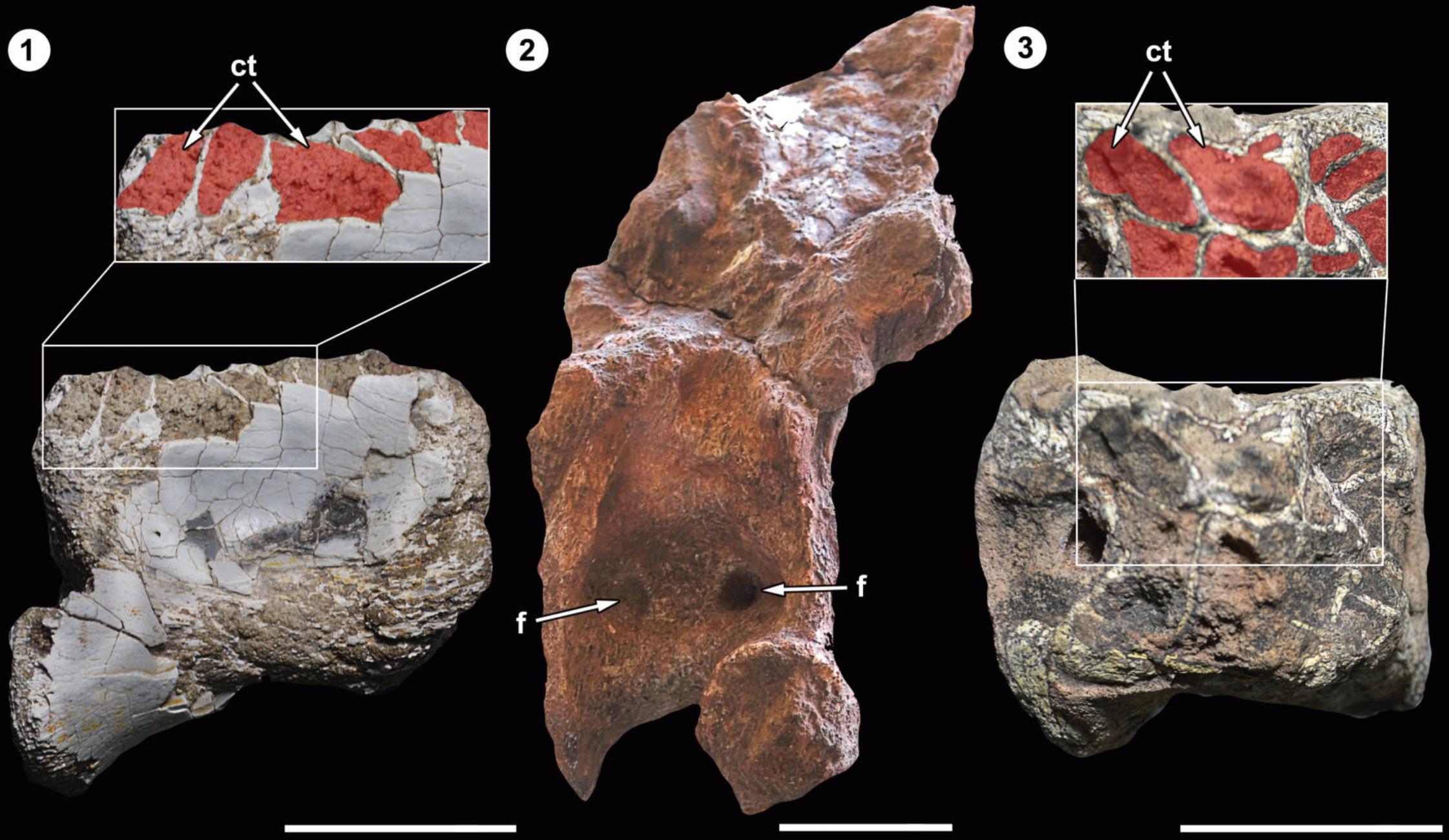

③


④

⑤





⑥



⑦

