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Abstract. Abelisaurids were medium- to large-bodied theropod dinosaurs that inhabited
Gondwana and Europe, even becoming the apex predators in the latest Cretaceous
ecosystems of many of these areas. European abelisaurids remain elusive, but their
remains are becoming increasingly abundant in the Late Cretaceous deposits of Ibero-
Armorica. In this work, systematic, morphometric, and cladistic analyses of tooth
samples from the Campanian—Maastrichian deposits of three localities (Chera 2,
Montrebei and Viso) from the Iberian Peninsula have allowed these elements to be
reassigned to abelisaurids. The specimen from Chera 2 is assigned to Arcovenator sp.
whereas teeth from Montrebei and Viso are classified as Abelisauridae indet. The latter
represents the first confirmed abelisaurid remain from the Cretaceous of Portugal. The
axial remains identified as belonging to Rhabdodon from the Lafio site are here
attributed to cf. Arcovenator. These findings indicate that abelisaurids were the only
apex terrestrial predators and among the most abundant theropods in the Late
Cretaceous faunas of the Ibero-Armorican landmass. The reclassification of mid- to
large-sized isolated teeth from Ibero-Armorica as abelisaurids, rather than
carcharodontosaurids or closely related forms, suggests that Abelisauridae had already
become the dominant apex theropod lineage by the Cenomanian. The abelisauroid fossil
record in Ibero-Armorica spans from the Albian to the latest Maastrichtian, indicating a
complex and temporally extensive presence. Despite most of the specimens being
fragmentary, the available evidence supports the persistence and diversification of
abelisaurids across the Ibero-Armorican domain, with multiple evolutionary lineages
arising either from a possible Albian stock or resulting from successive dispersals,
followed by insular diversification throughout the Late Cretaceous.

Keywords. Dinosaur. Ceratosauria. Abelisaurid. Late Cretaceous. Iberian Peninsula.

Paleobiogeography.
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Resumen. NUEVOS APORTES AL CONOCIMIENTO DE ABELISAURIDAE
(THEROPODA, DINOSAURIA) DEL CRETACICO SUPERIOR
IBEROARMORICANO. Los abelisauridos fueron dinosaurios terépodos de tamafio
medio a grande que habitaron Gondwana y Europa, llegando incluso a convertirse en los
depredadores apice en los ecosistemas del Cretacico final de muchas de estas regiones.
Los restos europeos de abelisauridos siguen siendo limitados, pero sus restos estan
comenzando a ser mas abundantes en los depdsitos del Cretécico Superior de Ibero-
Armorica. En este trabajo, los anélisis sistematicos, morfométricos y cladisticos de
muestras de dientes del Campaniense—Maastrichtiense de tres localidades (Chera 2,
Montrebei y Viso) de la Peninsula Ibérica han permitido reasignar estos elementos a
Abelisauridae. EI espécimen de Chera 2 se asigna a Arcovenator sp., mientras que los
dientes de Montrebei y Viso se clasifican como Abelisauridae indet. Este Gltimo
representa el primer resto confirmado de abelisaurido del Cretacico de Portugal. Los
restos axiales identificados anteriormente como pertenecientes a Rhabdodon
procedentes del yacimiento de Lafio se atribuyen aqui a cf. Arcovenator. El registro
fosil muestra que los abelisauridos fueron los Unicos depredadores terrestres dominantes
y uno de los grupos de terépodos mas abundantes en las faunas del Cretacico Superior
de Ibero-Armdrica. La reclasificacion de dientes aislados de tamafio medio a grande
como pertenecientes a abelisauridos, en lugar de a carcarodontosauridos u otros grupos
cercanos, sugiere que Abelisauridae ya se habia convertido en el grupo &pice de grandes
depredadores hacia el Cenomaniense. El registro de abelisauroideos en Ibero-Armdrica
abarca desde el Albiense hasta el Maastrichtiense final, lo que indica una presencia
compleja y prolongada en el tiempo de este grupo de terépodos. A pesar de la naturaleza
fragmentaria de la mayoria de los restos, la evidencia apunta a la persistencia y

diversificacion de los abelisauridos en el dominio Ibero-Armoricano, con multiples
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linajes evolutivos surgidos a partir de un posible stock albiense o de dispersiones
sucesivas, que experimentaron una diversificacion a lo largo del Cretéacico Tardio en
Europa.

Palabras clave. Dinosaurio. Ceratosauria. Abelisaurido. Cretacico Tardio. Peninsula

ibérica. Paleobiogeografia.
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ABELISAURIDAE comprises medium- to large-bodied (5-9 m in length) ceratosaurian
theropods characterized by deep, heavily sculptured skulls with bony protuberances, and
short, rounded snouts (Bonaparte, 1991; Wilson et al., 2003; Carrano and Sampson,
2008; Canale et al., 2009; Pol and Rauhut, 2012; Cerroni et al., 2022; Amudeo-Plaza et
al., 2023). They are recovered as a sister clade to the smaller-bodied Noasauridae within
Abelisauroidea (e.g., Novas, 1991; Bonaparte, 1991, 1996; Novas et al., 2013, Baiano et
al., 2021). The oldest abelisaurid remains are from the Jurassic of South America and
include an isolated abelisaurid tooth from the Late Jurassic of Uruguay (Soto et al.,
2022) and a relatively complete skeleton of the putative early-branching abelisaurid
Eoabelisaurus mefi from the Lower Jurassic of Patagonia (Pol and Rauhut, 2012).
Despite being present throughout the Cretaceous of Europe and Gondwana, abelisaurids
only became the dominant apex predators after carcharodontosaurids and spinosaurids
declined and/or went extinct in the mid Cretaceous (Hendrickx et al., 2015a and
references therein). However, they may have been more abundant than other inland
predators (Sales et al., 2016). After the Cenomanian—Turonian transition, abelisaurids
started to dominate the western European and Gondwanan landmasses (Candeiro and
Martinelli, 2005; Carrano et al., 2012; Novas et al., 2013; Tortosa et al., 2014; Csiki-
Sava et al., 2015; Hendrickx et al., 2015a).

The European abelisaurid record has significantly increased over the last decades (e.qg.,
Allain and Pereda-Suberbiola, 2003; Buffetaut, 2005; Osi et al., 2010; Osi and
Buffetaut, 2011; Tortosa et al., 2014; Csiki-Sava et al., 2015; Pérez-Garcia et al., 2016;
Isasmendi et al., 2022, 2024; Malafaia et al., 2025). The oldest definitive European
abelisauroid is currently Genusaurus sisteronis from the Albian of Provence, southern
France. Nevertheless, its phylogenetic position remains unresolved, having been

recovered as a noasaurid (e.g., Carrano and Sampson, 2008), an early-branching
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abelisaurid (e.g., Tortosa et al., 2014; Baiano et al., 2023), or a later branching
abelisaurid more related to Furileusauria (Buffetaut et al., 2024; Buffetaut, 2025).
Caletodraco cottardi is the second abelisaurid from the mid Cretaceous of France. It is
based on a partial skeleton likely recovered from lower Cenomanian deposits in
northwestern France and identified as a furileusaurian brachyrostran (Buffetaut et al.,
2024). Tarascosaurus salluvicus was the first abelisaurid reported of lower Campanian
deposits in southern France (Le Loeuff and Buffetaut, 1991) and despite its fragmentary
nature and some authors considering it as a nomen dubium (Rauhut, 2003, Allain and
Pereda-Suberbiola, 2003), this taxon was recovered amongst Abelisauridae in the
phylogenetic analyses performed by Tortosa et al. (2014). Other material from the
Iberian Peninsula, such as the Lafio femora, have been compared with Tarascosaurus
(Le Loeuff and Buffetaut, 1991), even though there is no conclusive evidence to support
this attribution (Isasmendi et al., 2022; Malafaia et al., 2025). The best-known European
abelisaurid is Arcovenator escotae from the upper Campanian of southern France,
which has been recovered within Majungasaurinae (Tortosa et al., 2014). The holotype
of Arcovenator is composed of a partial skeleton including cranial, axial and
appendicular material. Additional isolated teeth and caudal vertebrae from other
horizons and areas of the type locality have also been referred to this taxon.
Furthermore, other skeletal elements from the Upper Cretaceous of France and the
Iberian Peninsula have been assigned to this taxon (Tortosa et al., 2014; Pérez-Garcia et
al., 2016; Isasmendi et al., 2022; Malafaia et al., 2025). First regarded as Ceratosauria
indet. by Carrano and Sampson (2008), Betasuchus bredai, from Maastrichtian strata of
the Netherlands, was finally recovered as an abelisauroid more closely related to
Tarascosaurus by Tortosa et al. (2014) and currently represents the latest record of the

clade in Europe (Csiki-Sava et al., 2015). Other than abelisaurids, theropod remains
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from the uppermost Cretaceous Ibero-Armorican mainly belong to small-sized
coelurosaurians (e.g., Antunes and Sigogneau-Russell, 1991, 1992; Allain and Taquet,
2000; Garcia et al., 2000; Laurent et al., 2002; Laurent, 2003; Ortega et al., 2015;
Torices et al., 2015; Marmi et al., 2016; Puertdlas-Pascual et al., 2018; Isasmendi et al.,
2022, 2024; Santos Brilhante et al., 2022; Malafaia et al., 2023) whereas the majority of
fossils from large bodied theropods have been either identified as indeterminate
theropods (Antunes and Sigogneau-Russell, 1992; Laurent, 2003; Weishampel et al.,
2004; Company, 2005; Ortega et al., 2015; Torices et al., 2015; Pérez-Garcia et al.,
2016), tetanurans (Carrano et al., 2012), or ornithomimosaurs (Pereda-Suberbiola et al.,
2000).

This study aims to review the large-bodied theropod material from several uppermost
Cretaceous Iberian sites (Chera 2, Lafio, Montebrei and Viso), which comprises isolated
teeth and some axial elements, including a previously undescribed caudal vertebra.
Aside from the systematic studies, morphometric and cladistic analyses were performed
on the revised dental elements and the presence of Abelisauridae in Ibero-Armorica is

evaluated.

Institutional abbreviations. DPM, Departamento de Paleontologia de Madrid,
Universidad Complutense de Madrid, Madrid, Spain; I1PG, Instituto de Investigacion
en Paleobiologia y Geologia, General Roca, Argentina; MA, Musée d’ Angouléme,
Angouléme, France; MACN, Museo Argentino de Ciencias Naturales ‘Bernardino
Rivadavia’, Buenos Aires, Argentina; MAU, Museo Municipal “Argentino Urquiza”,
Neuquén, Argentina; MCNA, Museo de Ciencias Naturales de Alava/Arabako Natura
Zientzien Museoa, Vitoria/Gasteiz, Spain; MG, Museu Geoldgico, Lisbon, Portugal;

MPCA, Museo Provincial Carlos Ameghino, Cipolletti, Argentina; MPCN, Museo
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Patagonico de Ciencias Naturales, General Roca, Argentina; MPEF, Museo
Paleontoldgico Egidio Feruglio, Chubut, Argentina; MPZ, Museo de Ciencias
Naturales de la Universidad de Zaragoza, Zaragoza, Spain; UCPC, Paleontology
Collection of the University of Chicago, Chicago, USA; UPUAM, Unidad de
Paleontologia, Universidad Autonoma de Madrid, Madrid, Spain.

Anatomical abbreviations. cdl, centrodiapophyseal lamina; cv, cervix; dc, distal
carina; dl, dentine layer; dt, denticle; fch, facet for chevron; iet, irregular enamel-
texture; mc, mesial carina; ns, neural spine; pc, pulp cavity; poz, postzygapophysis; tp,

transverse process; tu, transverse undulation; vg, ventral groove.

GEOGRAPHICAL AND GEOLOGICAL SETTINGS

The skeletal elements here studied were recovered from four Iberian fossil sites namely,
Chera 2, Lafio, and Montebrei from Spain, and Viso from Portugal. The Chera 2 site is
situated near the locality of Chera in the province of Valencia (Valencian Community),
about 60 km west of the city of Valencia, in the eastern part of the Iberian Peninsula.
The Lafio site is located about 30 km south of the city of Vitoria/Gasteiz, in an
abandoned sand quarry (the Lafio quarry) between the towns of Lafio and Albaina
(County of Trevifio), in the northern Iberian Peninsula. The Montrebei locality is
located around 25 km southwest of the Tremp locality, east of the Congost de
Montrebei, in the Alsamora municipality (Lleida, northeastern Iberian Peninsula).
Finally, the locality of Viso is situated in the Montemor-o-Velho region (Coimbra), at
km 20 of the railway (Sauvage 1897-1898), in the western part of the Iberian Peninsula
(Fig. 1.1).

Geologically, the Chera 2 site is located in the Chera Basin (southwestern Iberian

Range), specifically in the Sierra Perenchiza Formation (Fm) (e.g., Company, 2005;
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Company and Szentesi, 2012) (Fig. 1.1). Even though this lithostratigraphic unit reaches
a maximum thickness of 300 m, it is only 50 m thick in the Chera area. It comprises
lagoonal micritic and brecciated limestones at the base, which transition upwards into
palustrine carbonates with evidence of pedogenic alterations towards the top (Platt,
1989; Alonso et al., 1991; Company, 2005). This formation has been interpreted as a
continental, shallow carbonate environment (Vilas et al., 1982) with shallow, low-
salinity water bodies at the base (Platt and Wright, 1992) and restricted, ephemeral
coastal carbonate lakes and ponds towards the top (Company, 2005). In this context, the
Chera 2 site is thought to have formed in an isolated pond that developed in floodplains,
where the fossils were transported after high-energy flows (Company, 2005). Peyrot et
al. (2020) suggested a late Campanian—?early Maastrichtian age for the Chera site based
on palynological studies; however, Company et al. (2005) proposed a late Campanian
age for it (Fig. 1.2).

The Lafio site is located in the Northern Castilian Ramp of the Basque-Cantabrian
Basin, specifically on the southern margin of the Miranda-Trevifio Syncline (Pereda-
Suberbiola et al., 2015; Corral et al., 2016) (Fig. 1.1). In the Lafio quarry, the Sedano
Fm crops out (Berreteaga, 2008; Corral et al., 2016). This formation mainly comprises
siliciclastic deposits that can be divided into two units: (1) a lower unit consisting of
marine marls and clays and (2) an upper unit composed of silty quartzarenites with
interbedded dolomitized limestone layers (Floquet et al., 1982). The Sedano Fm
represents a littoral environment, with a siliciclastic sequence in its upper part formed
by deltaic aggradation in the subtidal and intertidal areas, prior to the progradation of
the delta plain (Corral et al., 2016; Martin-Chivelet et al., 2019). At the Lafio quarry, the
Sedano Fm is 22 m thick and comprises two different units: (1) the basal unit, which

begins with lag deposits of siliciclastic gravel overlain by different sandstone packs
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with conglomeratic and erosive bases, and (2) the upper unit, which is mainly composed
of almost unconsolidated clayey sandstones. The fossils studied herein come from the
L1A and L2 vertebrate-bearing beds. Astibia et al. (1990) and Pereda-Suberbiola et al.
(2000) interpreted the Lafio area as a braided river system, where channels, sandbars
and pools developed. Corral et al. (2016) dated the continental vertebrate site of Lafio to
the late Campanian (chron C32n, 72—73.5 Ma) based on the combination of
lithostratigraphic and magnetostratigraphic analyses (Fig. 1.2).

The fossil locality of Montebrei is located in the South Pyrenean Basin, precisely in the
eastern Tremp Syncline (Fondevilla et al., 2016, 2019) (Fig. 1.1). The latter is the
largest of the various sub-basins formed by the compartmentalization of the synform
syntectonic sub-basins (Fondevilla et al., 2016). The uppermost Cretaceous and
Paleocene lithostratigraphic units crop out in the Tremp Syncline, encompassing
marine, transitional, and continental deposits. These include the middle Campanian—
Maastrichtian Arén Fm and the Maastrichtian—Paleocene Tremp Fm (Mey et al., 1968;
Nagtegaal et al., 1983; Mutti and Sgavetti, 1987). The latter overlays and laterally
transitions into the Arén Fm (Ardevol et al., 2000; Fondevilla et al., 2016). The Tremp
Fm has been informally divided into four units: the ‘Grey Garumnian’, the ‘Lower Red
Garumnian’, the ‘Vallcebre limestones and equivalents’, and the ‘Upper Red
Garumnian’ (Rosell et al., 2001; Perez-Pueyo et al., 2021). The Montrebei fossil locality
1s situated within the ‘Grey Garumnian’, specifically in La Posa Formation (Torices
Hernandez, 2002; Torices et al., 2015; Fondevilla et al., 2019). This unit consists of
grey marls and mudstones intercalated with sandstones, limestones, and occasional coal
beds, containing mixed marine and freshwater invertebrate faunas. It has been
interpreted as representing transitional environments such as lagoons, tidal mudflats,

and marshes (Eichenseer, 1988; Rosell et al., 2001; Diez-Canseco et al., 2014; Oms et
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al., 2016). The ‘Grey Garumnian’ is dated to the latest Campanian—Maastrichtian (Diez-
Canseco et al., 2014; Vicente et al., 2015, 2016; Fondevilla et al., 2016; Puertolas-
Pascual et al., 2018) and the Montrebei fossil site dates more precisely to the ‘mid’ early
Maastrichtian (C31r) (Fondevilla et al., 2019) (Fig. 1.2).

The vertebrate-bearing site of Viso is found in the Lusitanian Basin, either in the
“Sandstones and Mudstones of Viso” of Barbosa et al. (2008) or Viso Fm of Malafaia et
al. (2024) (Fig. 1.1). In the latter, a sandstone sequence is predominant, but mudstones,
which have been dated to the Campanian—Maastrichtian, based on palynological

studies, also crop out (Barbosa et al., 2008) (Fig. 1.2).

MATERIAL AND METHODS

Geographic and stratigraphic context of the material

The studied material consists of three isolated teeth from the Chera 2 site (CH 168),
Montrebei (DPM-MON-T10 1) and Viso (MG 73), and two vertebrae from the Lafio
site (MCNA 8366 and 17433). MCNA 8366 comes from the L1A vertebrate-bearing
bed, and MCNA 17433 was recovered from the L2 fossiliferous level. The specimens
are in three separate institutions namely, the Universidad Complutense de Madrid of
Spain (DPM-MON-T10 1), Museu Geoldgico of Lisbon, Portugal (MG 73), and the
Arabako Natura Zientzien Museoa/Museo de Ciencias Naturales de Alava of Vitoria-
Gasteiz, Spain (MCNA 8366 and 17433). The tooth CH 168 was studied based on
photographs and a cast.

Historically, DPM-MON-T10 1 was considered as the tooth of an indeterminate
theropod by Torices et al. (2015), before being assigned to an indeterminate
Abelisauridae by Isasmendi et al. (2024). It should be noted that this specimen never

received a proper description. The tooth MG 73 was first attributed to Megalosaurus sp.
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by Sauvage (1897-1898) at the end of the 19" century, then to Megalosaurus cf.
pannoniensis by Lapparent and Zbyszewski (1957), and recently to Theropoda indet. by
Malafaia et al. (2024). The neural arch MCNA 8366 was originally assigned to
Rhabdodon by Pereda-Suberbiola and Sanz (1999), while the vertebra MCNA 17433
(previously labeled as MCNA 14077) was tentatively identified as Abelisauridae indet.
by Isasmendi et al. (2021). Finally, the tooth CH 168 was referred to as Theropoda
indet. by Company (2005), as ?Neoceratosauria indet. by Company et al. (2009) and as
cf. Arcovenator by Isasmendi et al. (2022).

Comparative methodology and terminology for the isolated teeth. Unlike the
postcranial remains, which was studied first-hand, the isolated teeth were studied under
a stereo microscope (Nikon® SMZ645) and through first-hand observations. Crown-
based measurements were taken using a digital caliper (Juning®), while denticle-based
measurements were taken either under the stereo microscope or with the Imagej
software (v.1.51j8). The study of the isolated teeth follows the anatomical, positional,
directional and morphometric nomenclature proposed by Smith and Dodson (2003),
Smith et al. (2005), and Hendrickx et al. (2015b).

Measurements taken on the isolated teeth. The following measurements were taken
on the studied sample based on Currie et al. (1990), Smith et al. (2005), and Hendrickx
et al.’s (2015b, 2020) methodology (see Supplementary material 1): crown base length
(CBL), crown base width (CBW), mid-crown length (MCL), mid-crown width
(MCW), crown height (CH), apical length (AL), extent of the mesiobasal denticles
(MDE), length of the mesial serrated carina (MSL), distoapical denticle density (DA),
distobasal denticle density (DB), distocentral denticle density (DC), mesioapical
denticle density (MA), mesiobasal denticle density (MB), mesiocentral denticle density

(MC), mesial denticle length (MDL), and distal denticle length (DDL). In addition, the

12
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crown base ratio (CBR; as CBW/CBL), crown height ratio (CHR; as CH/CBL), mid-
crown ratio (MCR; as MCW/MCL), mesial angle of the crown (CMA), distal angle of
crown (CDA), average mesial denticle density (MAVG; as (MA+MC+MB)/ 3),
average distal denticle density (DAVG,; as (DA+DC+DB)/ 3), and denticle size density
index (DSDI; as MC/DC) were calculated. The MCA and DCA were calculated using

the following equation (Smith, 2007; Serrano-Martinez et al., 2015):

CBL 2+AL 2-CH 2 CBL 2+CH ?2?-AL *?
CMA = arcos and CDA = arcos
2XCBLXAL 2XCBLXAL

Linear discriminant analyses (LDA) on the isolated teeth. The classification of the
isolated teeth was supported by several linear discriminant analyses performed using
PAST v.4.05 (Hammer et al., 2001). When performing the LDAs, variables expressed
as ratios (CBR, CHR and MCR) as well as the crown angles (CDA and CMA) were
excluded, as these are not independent but weighted variables (Hendrickx et al., 2015b).
Furthermore, to ensure that all variables were metric-based, measurements of denticle
length (MLD and DDL) were used instead of denticle densities, in accordance with the
approach of Hendrickx et al. (2020). Following Malafaia et al. (2025), the number of
flutes on the labial and lingual surfaces (LAF and LIF, respectively) were not included
in the analyses, as there are non-metric variables. Therefore, a total of 10 variables were
used in the performed LDAs, as Malafaia et al. (2025). These variables are: CBL, CBW,
CH, AL, MCL, MCW, MDE, MSL, MDL, and DDL. To perform the LDAs, the
database and a similar methodology proposed by Malafaia et al. (2025) were used (see
Supplementary material 1). Prior to conducting the morphometric analyses, the data
were normalized using a Log (x+1) transformation for all variables to avoid zero values.
In addition, as proposed by Young et al. (2019) and Hendrickx et al. (2020), an arbitrary
value of 100 denticles per five millimeters was used for those specimens with non-

denticulated carinae. Finally, specimens studied herein were not assigned to any
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predefined group for the LDAs and were instead treated as belonging to an “unknown
taxon”.

Firstly, two linear discriminant analysis, one at the taxon level and another at the clade
level, were carried out using a database comprising 528 teeth with the data from
Hendrickx et al. (2020) (Database 1; Supplementary material 1) belonging to twenty-
four Cretaceous taxa (twenty-two genera, and two indeterminate family-level clades),
with the aim of minimizing potential noise (see Malafaia et al., 2025; Supplementary
material 1). This dataset gathers dental measurements from one non-abelisauroid
ceratosaurian (Genyodectes), nine abelisaurids (Abelisaurus, Arcovenator, Aucasaurus,
Carnotaurus, Chenanisaurus, ‘Indosuchus’, Majungasaurus, Skorpiovenator, and
Abelisauridae indet.), three spinosaurids (Baryonyx, Suchomimus and Spinosaurinae
indet.), one neovenatorid (Neovenator), two megaraptorans (Australovenator and
Fukuiraptor), five carcharodontosaurids (Acrocanthosaurus, Carcharodontosaurus,
Eocarcharia, Giganotosaurus, and Mapusaurus), and six tyrannosaurids
(Albertosaurus, Alioramus, Daspletosaurus, Gorgosaurus, Tyrannosaurus and
Zhuchengtyrannus).

Afterwards, two additional LDAs were performed, one at taxon level and another at
clade level, excluding the groups that plotted well-separated from the herein studied
teeth (Database 2; Supplementary material 1), as these were considered not closely
related. The excluded specimens belonged to all spinosaurids, as well as the
tyrannosaurids Daspletosaurus, Tyrannosaurus and Zhuchengtyrannus, and the
carcharodontosaurid Carcharodontosaurus.

Finally, a fifth LDA was performed with the third database (Database 3; Supplementary
material 1) compiled by Malafaia et al. (2025), which includes Ibero-Armorican

abelisaurids or specimens classified among Abelisauridae. These consist of the
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indeterminate abelisaurids from the Western Tremp Syncline (South Pyrenean Basin)
(Isasmendi et al., 2024), the abelisaurid teeth closely related to Arcovenator from Poyos
(Malafaia et al., 2025), the specimens referred to cf. Arcovenator from Armufa (Pérez-
Garcia et al., 2016), and the Arcovenator specimens from Jas Neuf Sud and Lafio
(Tortosa et al., 2014; Hendrickx et al., 2020; Isasmendi et al., 2022). In this analysis, the
isolated teeth of an indeterminate tetanuran from Iharkut (Osi et al., 2010) were
excluded from the dataset.

Cladistic analysis. A cladistic analysis was performed based on the dentition-based
matrix (146 morphological dental characters) of Hendrickx et al. (2020), into which we
scored the isolated teeth MG 73, CH 168, and DPM-MON-T10 1 (see Supplementary
material 2). The positive constraints defined by Hendrickx et al. (2020) were applied in
these analyses to recover a topology consistent with the most recent phylogenetic
hypotheses. Additionally, to test the phylogenetic affinities of the studied specimens
within the Abelisauridae clade, we constrained their placement and evaluated the
additional steps required to achieve that position. The phylogenetic analysis was carried
out using TNT 1.6 (Goloboff and Morales, 2023). The studied specimens were scored
using Mesquite 3.7 (Maddison and Maddison, 2011) and subsequently imported into
TNT. The search strategy follows the protocol used by Hendrickx et al. (2020),
beginning with a combination of the tree-search algorithms, including Wagner trees,
TBR branch swapping, sectorial searches, Ratchet (with the perturbation phase stopped
after 20 substitutions), and Tree Fusing (5 rounds), until 100 hits of the same minimum
tree length were achieved. The best trees recovered were subjected to a final round of
TBR branch swapping. Zero-length branches in any of the recovered most parsimonious
trees were collapsed. Consistency (Cl) and retention (RI) indexes were obtained using

the STATS.RUN command.
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SYSTEMATIC PALEONTOLOGY
Suborder THEROPODA Marsh, 1881
Infraorder CERATOSAURIA Marsh, 1884
Family ABELISAURIDAE Bonaparte and Novas, 1985
Abelisauridae indet.
Figure 2

Morphotype 1
Referred material. DPM-MON-T10 1, one isolated mesial tooth (Fig. 2.1-2.7).
Geographic occurrence. Montrebei (Lleida, Spain).

Stratigraphic occurrence. ‘Grey Garumnian’ strata of the Tremp Formation; La Posa
Formation; ‘mid’ early Maastrichtian (C31r) (Torices Hernandez, 2002; Torices et al.,
2015; Fondevilla et al., 2019).

Description. DPM-MON-T10 1 consists of a crown that lacks its basal portion and the
apex (Fig. 2.2-2.5). It is here interpreted as a mesial tooth, based on its symmetrical
‘D’-shaped cross-section, relatively thick crown, and asymmetrical labial and lingual
surfaces (Hendrickx et al., 2015b, 2020). No denticles are complete, but the bases of the
mesial denticles and some distal denticle bases are preserved (Fig. 2.1). The enamel is
also largely missing, but a patch is preserved on the mesioapical part of the labial
surface (Fig. 2.6). The crown is ziphodont, not very compressed labiolingually and quite
distally curved, with its apicalmost part extending beyond the basodistalmost point of
the crown (Fig. 2.2-2.5). The mesial margin of the crown is strongly convex, and the

distal margin is concave in lateral view (Fig. 2.5). In distal view, the labial surface is
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convex, and the lingual one is mostly straight, making the crown slightly lingually tilted
(Fig. 2.4). The lingual and labial surface are convex, but the lingual surface becomes
flatter close to the distal carina. The basalmost cross-section of the preserved crown is
nearly subsymmetrical ‘D’-shaped, whereas the mid cross-section is lanceolate (Fig.

2.7).

Both mesial and distal carinae are present and denticulated, but because the basal part of
the crown is not preserved, their entire extension cannot be assessed. The mesial carina
is mesiolingually oriented and straight; it is centered apically but slightly displaces
lingually toward the base (Fig. 2.2). On the other hand, the distal carina is straight and
strongly labially deflected (Fig. 2.4). The mesial denticle density is 10 denticles per five

mm apically and at mid crown and there is no random variation of denticle-size.

The preserved enamel surface is slightly polished and exhibits micro-scratches. The

enamel-texture is subtle, non-oriented, and irregular (Fig. 2.6).
Morphotype 2
Referred material. MG 73, one isolated lateral tooth (Fig. 2.8-2.12).

Geographic occurrence. Viso locality, region of Montemor-o-Velho, Coimbra, Portugal

(Sauvage, 1897-1998; Malafaia et al., 2024).

Stratigraphic occurrence. Viso Formation (also known as Sandstones and Mudstones

of Viso); Campanian—Maastrichtian (Barbosa et al., 2008; Malafaia et al., 2024).

Description. MG 73 consists of a lateral tooth crown that lacks the apex and a fragment
of the root (Fig. 2.8-2.12). It is interpreted as a lateral tooth based on its symmetrical

cross-section outline and low CBR value (see Hendrickx et al., 2015b, 2019, 2020). The
enamel layer is eroded on its lingual surface (Fig. 2.11), and the mesial carina is almost

entirely abraded (Fig. 2.8). The distal carina is also poorly preserved but the bases of the
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denticles are visible along the carina and the basal denticles are relatively well

preserved (Fig. 2.10-2.11).

This crown is relatively elongate, ziphodont, and strongly labiolingually flattened (Fig.
2.8-2.12), with a CBR of 0.58 (CBL=12 mm and CBW=7 mm). The crown is distally
curved, but it is not possible to determine whether the apex would have extended
beyond its basodistalmost point (Fig. 2.11). In lateral view, the mesial margin is convex,
while the distal margin is slightly concave, becoming straighter toward the base (Fig.
2.11). In distal view, the lingual surface is slightly concave, and the labial surface is
convex, suggesting that the apex was slightly tilted lingually (Fig. 2.10). There is no
concave surface adjacent to the carinae, but the lingual surface becomes flat near the
distal carina (Fig. 2.9). The basal cross-section of the crown is lanceolate (Malafaia et
al., 2024) and the cross-section of the root is oval (Fig. 2.12). No basal constriction is

present between crown and root.

The distal carina reaches the cervix and the distal denticles are present along the entire
preserved length (Fig. 2.10). Denticles also appear to be present on the mesial carina,
but only their bases are visible at mid-crown (Fig. 2.8). The full extent of the mesial
carina cannot be determined (Malafaia et al., 2024). The distal carina is centrally located
and slightly bowed whereas the mesial carina is more lingually positioned and straight
(Fig. 2.8 and 2.10). There is no random variation in denticle size along the distal carina
and the denticles decrease in size towards the base. Only the distal denticle densities
could be measured. The DC value is 20 denticles per five millimeters, and the DB is
22.5 denticles per five millimeters. The basal denticles are sub-quadrangular with
slightly convex external margins and are separated by narrow interdenticular spaces.
The denticles are poorly preserved at mid-crown, with only the bases of some visible.

These are also separated by narrow interdenticular spaces and seem slightly longer
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apicobasally than mesiodistally. However, because the external end is not preserved,
this morphology cannot be confirmed. Interdenticular sulci are not visible adjacent to
either the distal or mesial carinae. Some subtle transverse undulations are present on the
enamel of the lingual surface of the crown (Fig. 2.9). The enamel texture is subtle, non-

oriented, and irregular (Malafaia et al., 2024).
Genus Arcovenator Tortosa, Buffetaut, Vialle, Dutour, Turini and Cheylan, 2014
Cf. Arcovenator sp.
Figure 3-4

Referred material. MCNA 8366, an anterior dorsal vertebra; MCNA 17433, an anterior

to middle caudal vertebra.
Geographic occurrence. Lafio site, Trevifio County, Spain.

Stratigraphic occurrence. Sedano Formation; upper Campanian (C32n) (Corral et al.,
2016).

Description.

Axial skeleton.

Dorsal vertebra (Fig. 3.1-3.4). MCNA 8366 comprises the neural arch of an anterior
dorsal vertebra (probably a D1 or D2, based on O’Connor, 2007). This neural arch is
covered by an iron patina and lacks both prezygapophyses (Fig. 3.1-3.4). The neural
spine and the left transverse process are badly damaged, with only their bases preserved.
The right transverse process is laterally projected and horizontal but slightly inclined
anteriorly, forming an angle of less than 20° relative to the horizontal plane (Fig. 3.1-
3.4). It measures 46 mm in length and is developed in the anterior half of the vertebra.
In dorsal view, the right transverse process expands anteroposteriorly towards the

diapophysis, making it fan-shaped in this view (Fig. 3.4). The posterior edge of the
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transverse process is straight, and its anterior margin is convex. In lateral view, the
diapophysis is D-shaped and faces ventrolaterally (Fig. 3.2). The base of the neural
spine is mediolaterally narrow anteriorly and broadens posteriorly. It extends posteriorly
beyond the bases of the prezygapophyses, almost reaching the posterior margin of the
postzygapophyses (Fig. 3.4). The postzygapophyses face ventrolaterally, are subcircular
in outline, and appear to overhang the centrum (Fig. 3.1 and 3.2). The presence or
absence of a hyposphyene-hypantrum articulation cannot be determined (Fig. 3.1).
Caudal vertebrae (Fig. 3.5-3.8). MCNA 17433 consists of the centrum and the base of
the neural arch of an anterior to middle caudal vertebra (posterior to C5 due to its
straighter anterior and posterior margins, based on Méndez, 2014), which are slightly
mediolaterally compressed due to deformation (Fig. 3.5-3.8). The centrum and neural
arch are almost fully fused, with the suture line being almost indiscernible (Fig. 3.7).
The centrum is amphicoelous, spool-shaped, and slightly elongated (Fig. 3.5-3.8).
MCNA 17433 measures 79 mm in anteroposterior length. Its anterior articular surface is
57 mm in height and 46 mm in width, while the posterior articular surface is 64 mm in
height and 46 mm in width. Both the anterior and posterior articular surfaces are
elliptical (Fig. 3.6 and 3.8). In lateral view, the anterior and posterior surfaces are
straight, and the ventral margin is concave (Fig. 3.7). The centrum is medially
compressed and exhibits relatively shallow pleurocentral depressions. However, the
base of the neural arch is wider than the mid-centrum. The ventral surface of the
centrum features an anteroposterior longitudinal groove, which is laterally delimited by
a ridge on each side (Fig. 3.5). In the same view, the posterior end of the centrum
exhibits quite prominent facets for articulation with the haemal arches, making the

posterior end of the centrum more ventrally projected (Fig. 3.5).
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The preserved portion of the neural arch includes the bases of the transverse processes
(Fig. 3.5 and 3.7), which are centrally located and ventrally positioned in the neural
arch. These processes are relatively thin and sheet-like and the preserved parts taper
laterally. The ventral surface of the left transverse process exhibits a possible broad but
not very protruding centrodiapophyseal lamina (Fig. 3.5 and 3.7).

Arcovenator sp.

Figure 4
Referred material. CH 168, one isolated lateral tooth.
Geographic occurrence. Chera, Valencia, Spain.
Stratigraphic occurrence. Sierra Perenchiza Formation; upper Campanian (Company,
2005; Company et al., 2005).
Description. CH 168 preserves the crown and part of the root. It is interpreted as a
lateral tooth based on its symmetrical cross-section outline and low CBR value (see
Hendrickx et al., 2015b, 2019, 2020). The base of the crown is distally damaged, and
fractures are present throughout the crown (Fig. 4). Parts of the carinae are also missing.
An apically located elliptical wear facet is present on the labial surface (Fig. 4.5). The
crown is ziphodont, labiolingually compressed, and distally curved. The apex extends
slightly beyond the basodistalmost point of the crown (Fig. 4). In lateral view, the
mesial margin is convex, while the distal margin is concave apically, becoming
straighter toward the base (Fig. 4.3 and 4.5). In distal view, the lingual surface is
straight basally and convex apically whereas the labial margin is convex basally and
becomes straighter apically (Fig. 4.4). Both labial and lingual surfaces are convex, with
no concave surfaces adjacent to any carinae. The lingual margin becomes more planar

near the base of the distal carina. The basal cross-section of the crown is oval to
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lanceolate (Fig. 4.6), and the mid cross-section is lenticular. The cross-section of the
root is more oval, with no basal constriction between the root and the crown.

The CBL measures 15.47 mm, whereas the CBW measures 9.88 mm, resulting in a
CBR of 0.64. The CH is 30.02 mm, being the CHR of 1.94. The AL measures 33.52
mm.

Both mesial and distal carinae are denticulated (Fig. 4.1 and 4.8). The mesial carina is
straight, centered apically and mesiolingually displaced toward the base of the crown.
The mesial carina does not reach the cervix but extends from the apex to approximately
two-thirds of the crown (Fig. 4.2). The distal carina reaches the cervix, and it is
sigmoidal in distal view and labially deflected (Fig. 4.4).

The denticles are largest at mid-crown on the mesial carina and gradually decrease in
size basally (Fig. 4.2, 4.3 and 4.5). The wear facet prevents from determining whether
there was a denticle-size discrepancy apically. Nevertheless, the distal denticles are
larger apically (Fig. 4.3-4.5). There is no random variation in denticle size along the
carinae. The denticles are almost equal in size or slightly larger on the mesial carina,
with a DSDI value of 1. The mesial denticle density is 15 mm per 5 mm, whereas the
distal denticle density is 12 denticles per 5 mm apically, 15 denticles per 5 mm at mid-
crown, and 17 denticles per 5 mm at the base. The outline of the denticles is
symmetrically to slightly asymmetrically convex and perpendicular to the carinae (Fig.
4.1 and 4.8). The mesial denticles are mainly subquadrangular but become slightly
apicobasally subrectangular apically (Fig. 4.1). The distal denticles, on the other hand,
are mesiodistally subrectangular at mid-crown and basally, but almost subrectangular
apically (Fig. 4.8). Subtle interdenticular sulci are present on both carinae. These are

short, straight, and basally inclined.

22



522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

941

542

543

544

545

546

A few transverse undulations are present on the crown, but they are particularly subtle.
Subtle marginal undulations are similarly present on the labial surface of the crown,

close to the distal carina. The enamel texture is non-oriented and irregular (Fig. 4.7).

RESULTS

Morphometric analyses

The discriminant analyses exhibit similar variance in their axes (Fig. 5 and 6). Axis 1
accounts for 42.45-55.62 % of the total variance, while Axis 2 explains 20.54-30.06 %.
The reclassification rates obtained in the LDAs are relatively high, ranging from 63.42
to 75.85 %, and are significantly higher using the clade-level databases (see
Supplementary material 1).

The classification of the specimens studied herein within Theropoda varies depending
on the database and the linear discriminant analysis (Table 1). In LDA 1 (clade level,
database 1), the tooth from Viso (MG 73) is classified as Abelisauridae (Jackknifed),
the tooth from Chera 2 (CH 168) as a non-abelisauroid ceratosaurian (Jackknifed), and
the Montrebei tooth (DPM-MON-T10 1) as Carcharodontosauridae (classification and
Jackknifed). In LDA 2 (taxon level, database 1), MG 73 is classified as Carnotaurus
(classification and Jackknifed), CH 168 as Gorgosaurus (Jackknifed), and DPM-MON-
T10 1 as Acrocanthosaurus (classification and Jackknifed). In LDA 3 (clade level,
database 2), MG 73 is classified as a megaraptoran (Jackknifed), CH 168 as a
tyrannosaurid (classification and Jackknifed), and DPM-MON-T10 1 as a megaraptoran
(Jackknifed). In LDA 4 (taxon level, database 2), MG 73 is again classified as
Carnotaurus (classification and Jackknifed), CH 168 as Gorgosaurus (Jackknifed), and
DPM-MON-T10 1 as Aucasaurus (classification and Jackknifed). Finally, the

discriminant analysis performed using the Ibero-Armorican abelisaurid dental record
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(Database 3) classifies MG 73 as Arcovenator (Jas Neuf Sud) (classification and
Jackknifed), CH 168 as the indeterminate abelisaurid teeth from Poyos, which are
closely related to Arcovenator (Jackknifed), and DPM-MON-T10 1 as Abelisauridae
indet. 1 from the Western Tremp Syncline (Jackknifed) (Table 1).

Cladistic analyses

The cladistic analysis performed on the data matrix including MG 73 and using a
constrained tree topology recovered a single most parsimonious tree (Cl = 0.200; RI =
0.457; L =1304). MG 73 is grouped with noasaurids within a well-resolved
Abelisauroidea clade (Fig. 7.1). The specimen from Viso shares with other
abelisauroids the spacing between mid-crown denticles on the distal carina, which is
less than one-third of the denticle width (state O; character 107) and the presence of a
smooth or irregular (non-oriented) enamel-texture (state O; character 121). The only
synapomorphy found for Noasauridae that can be verified in MG 73 is the average
number of mid-crown denticles per five millimeters on the distal carina (character 89),
which ranges between 16 and 29 (state 1), whereas in abelisaurids it is usually lower,
between 9 and 15 (state 2). Within Noasauridae, the specimen from Viso is positioned
as the sister taxon to Masiakasaurus, based on the presence of tenuous transverse
undulations on the crown (state 1; character 113). Forcing the specimen from Viso into
the Abelisauridae clade recovered three most parsimonious trees, with the consensus
tree (CI1 = 0.199; RI = 0.451) being four steps longer (L =1311) than that obtained when
treating the specimens as floating taxon. Interestingly, constraining MG 73 within the
group comprising Arcovenator, Majungasaurus, and Indosuchus yielded a single most
parsimonious tree (Cl = 0.200; R1 = 0.453) and did not require additional steps (L =
1307) relative to the analysis with the specimens as floating taxon. However, no

synapomorphies were recovered for this group in the analysis.
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The analysis performed for specimens CH 168 recovered five most parsimonious trees
(C1=0.200; R1 =0.453; L = 1307) and the consensus tree (Cl1 =0.199; R1 =0.452; L =
1309) places this specimen within Coelurosauria, allied with the tyrannosauroids
Gorgosaurus, Raptorex, Alioramus, Tyrannosaurus, and Daspletosaurus (Fig. 7.2). The
analysis found the following tyrannosauroid synapomorphies present in the Chera 2
specimen: (i) crown height between 1 and 6 cm (state 1; character 69); (ii) the denticles
on the mesial carina at two-thirds height of the crown have a subquadrangular shape
(state 1; character 95); and (iii) mesial and distal denticles of similar size (0.8 < DSDI <
1.2) (state O; character 105). However, all these features are also shared with most
abelisaurids (Hendrickx et al. 2020). Forcing the specimen from Chera into the
Abelisauridae clade recovered three most parsimonious trees (Cl = 0.199; RI = 0.451; L
= 1310), with the consensus tree (Cl = 0.199; RI = 0.449) being five steps longer (L =
1314) than that obtained when treating the specimens as floating taxon. This analysis
recovered the following abelisaurid synapomorphies present in CH 168: (i)
subquadrangular shape of denticles at two-thirds height of the crown on mesial carina in
lateral view (state 1; character 95) and (ii) horizontal subrectangular shape of mid-
crown denticle on distal carina in lateral view (state 1; character 96).

Finally, the analysis performed for DPM-MONT-T10 1 recovered seven most
parsimonious trees (Cl = 0.200; RI = 0.454; L = 1305; consensus tree Cl = 0.180; Rl =
0.376; L = 1454). The strict consensus tree shows a poor resolution, with most taxa
placed in a large polytomy (Fig. 8). Only a few clades such as Megalosauroidea,
Abelisauridae, Allosauroidea and some coelurosaurian groups are better resolved. The
most parsimonious trees from this analysis placed the specimen from Montrebei within
the Paraves clade, sometimes allied with troodontids and other times with avialan taxa.

Forcing the specimen into the Abelisauridae clade recovered a single most parsimonious
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tree (Cl = 0.199; RI = 0.452) and required four additional steps (L = 1309) relative to
the most parsimonious trees obtained when treating the specimens as floating taxon. On
the other hand, constraining its position within a group comprising Arcovenator,
Majungasaurus, and Indosuchus also yielded a single most parsimonious tree (Cl =
0.199; R1 = 0.451) and required only one further step (L = 1310) compared to the

previous analysis.

DISCUSSION

Comparisons and identification of the isolated teeth

Almost every morphometric analyses support the attribution of the MG 73 specimen to
Abelisauridae, as this tooth consistently grouped within Abelisauridae, Arcovenator, or
Carnotaurus in the LDAs (Table 1). The classification of CH 168 and DPM-MON-T10
1 is more ambiguous, as neither was grouped within Abelisauridae in any of the first
three LDASs performed. Indeed, the CH 168 specimen was classified as a tyrannosaurid,
a non-abelisauroid ceratosaurian, or Gorgosaurus, while DPM-MON-T10 was grouped
within Carcharodontosauridae, Megaraptora, or Acrocanthosaurus. Nevertheless, DPM-
MON-T10 was also grouped with Abelisauridae indet. morphotype 1 from the Western
Tremp Syncline or Aucasaurus. Therefore, the morphometric analyses also strongly
suggest abelisaurid affinities for this specimen. Regarding the cladistic analyses, the
results do not support direct attribution of the teeth to Abelisauridae. The Viso specimen
was recovered within Abelisauroidea, but more closely related to Noasauridae.
Nevertheless, forcing the specimen into Abelisauridae, in a group comprising
Arcovenator, Majungasaurus, and Indosuchus, does not require any additional steps,
suggesting that this hypothesis is as parsimonious as the position recovered in the

unconstrained analysis. The Chera 2 specimen was allied with Tyrannosauroidea.
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However, all features found as synapomorphies for this clade are also shared with most
abelisaurids. Forcing the specimen into Abelisauridae requires five additional steps
compared to the length of the consensus tree recovered on the unconstrained analysis
and one extra step to place it within the group comprising Arcovenator, Majungasaurus,
and Indosuchus. The analysis performed for the Montrebei specimen yielded very poor
resolution, with most taxa placed in a large polytomy. The most parsimonious trees
placed the specimen within the Paraves clade and forcing its position into Abelisauridae
required four additional steps. The lack of European abelisaurid dental and mandibular
elements, along with the limited representation of European tooth data in the matrix,

may account for the poor resolution of the cladistic analyses.

Abelisauridae indet.

Morphotype 1. The isolated tooth DPM-MON-T10 1 from Montrebei shares with
Abelisauridae a ziphodont crown with a ‘D’-shaped cross-section and the irregular, non-
oriented enamel-texture (Hendrickx et al., 2019, 2020). Therefore, this tooth can be
confidently assigned to Abelisauridae, which is also supported by the results of some
morphometric analyses, despite the cladistic analysis not yielding sufficient resolution
to test this attribution. Furthermore, the distal position of the apex and the profile of the
distal margin are similar to the condition found in the distal teeth of the mesial dentition
in abelisaurids, with the crown being more distally recurved (Hendrickx et al., 2020).
Despite most abelisaurid taxa exhibiting a salinon-to J-shaped basal cross-section,
specimen DPM-MON-T10 1 has a ‘D’-shaped cross-section, as observed in
Rahiolisaurus and MPCN-PV 69 (Novas et al., 2010; Gianechini et al., 2015;
Hendrickx et al., 2020). The Montrebei tooth is particularly thick, a condition similarly

present in the mesialmost teeth of several abelisaurid taxa such as Chenanisaurus,
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Majungasaurus, and Rahiolisaurus (Hendrickx et al., 2020) but differing from the more
labiolingually compressed mesial teeth of other abelisaurids such as the premaxillary
teeth of Majungasaurus (see Hendrickx et al., 2020). Although the crown lacks its
cervical portion, it seems to have been weakly elongated, as in all known members of
Abelisauridae (Hendrickx et al., 2020).

The mesiolingually oriented mesial carina of the Montrebei specimen resembles that of
the first premaxillary tooth of abelisaurids, as well as some teeth possibly belonging to
Abelisaurus (MPCA 1, 5 and 267; see Hendrickx et al., 2020), mesial abelisaurid
crowns from the Western Tremp Syncline (Abelisauridae indet. 1) and Poyos
(Abelisauridae indet. morphotype 1), along with the lateral teeth of Arcovenator and
closely related specimens from Poyos (Hendrickx and Mateus, 2014, Tortosa et al.,
2014; Hendrickx et al., 2020; Isasmendi et al., 2022, 2024; Malafaia et al., 2025). The
strongly lingually deflected distal carina of DPM-MON-T10 is a feature shared with the
mesial abelisaurid crown from the Western Tremp Syncline, the isolated mesial crown
IIPG-09, and the lateral crowns of Arcovenator (Hendrickx et al., 2020; Meso et al.,
2021; Isasmendi et al., 2022, 2024). Two distinctive features of the Montrebei crown
are the position of the apex, which apparently extended beyond its basodistalmost point,
and its concave distal profile. These features resemble the condition seen in
‘Indosuchus’ and differ from the mesial dentition of Chenanisaurus, Majungasaurus,
Skorpiovenator, the mesial teeth closely related to Arcovenator from Poyos, and mesial
teeth from the Allen Formation in Patagonia (Smith, 2007; Hendrickx et al., 2020; Meso
et al., 2021; Malafaia et al., 2025). However, the distal maxillary teeth of ‘Indosuchus’
do not exhibit a distal profile as concave as that of the Montrebei specimen (see
Hendrickx et al., 2020; fig. 6.f). Therefore, in light of these considerations, DPM-MON-

T10 1 is here assigned to Abelisauridae indet.
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Morphotype 2.

The isolated tooth MG 73 from Viso shares a combination of features with other
members of Abelisauridae, namely a ziphodont crown, a straight or gently convex distal
profile, a lanceolate basal cross-section, denticulated mesial and distal carinae (with the
distal carina reaching the cervix), presence of large number of small denticles in the
distal carina (c. 20 denticles per 5 mm), sub-quadrangular distal denticles, narrow
interdenticular space, and an irregular, non-oriented enamel texture (see Hendrickx et
al., 2020). Furthermore, the cladistic and morphometric analyses carried out herein
further support its referral to Abelisauridae or, at least to Abelisauroidea.

An irregular enamel surface texture and the presence of transverse undulations are two
dental features typically observed in Abelisauridae dentition (e.g., Canale et al., 2009;
Longrich et al., 2017; Hendrickx et al., 2019, 2020; Meso et al., 2021; Isasmendi et al.,
2022, 2024). Transverse undulations are also present in other Iberian abelisaurid teeth
such as the three abelisaurid morphotypes from the latest Maastrichtian of the Western
Tremp Syncline (South Pyrenean Basin) (Isasmendi et al., 2024) and the teeth of
Arcovenator from the upper Campanian of Armuiia (UPUAM 14044) and Lafio
(Isasmendi et al., 2022). Unlike MPZ 2004/8, MPZ 2017/804, and MPZ 2022/86 from
the Maastrichtian of Western Tremp Syncline but similar to the lateral teeth of most
Abelisauridae (Hendrickx et al., 2020), concave surfaces adjacent to the carinae are
absent in MG 73.

MG 73 shares a moderately compressed crown (CBR of 0.58) with Abelisaurus,
Arcovenator, Aucasaurus, and Majungasaurus (Hendrickx et al., 2020), as well as the
Abelisauridae indet. morphotypes 1 and 3 from the Western Tremp Syncline (Isasmendi

et al., 2024) and many teeth from Poyos (Malafaia et al., 2025).
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Typically, the mesial and distal carinae in lateral abelisaurid crowns are centrally
located on their respective mesial and distal margins (Hendrickx et al., 2020). However,
in the MG 73 specimen, the mesial carina is lingually positioned and straight,
resembling the condition present in the teeth referred to Arcovenator or a closely related
taxon from Jas Neuf Sud, Lafio, and Poyos (Tortosa et al., 2014; Hendrickx et al., 2020;
Isasmendi et al., 2022; Malafaia et al., 2025). The distal carina of MG 73 is centrally
located, as in most abelisaurids (Hendrickx et al., 2020), differing from the strongly
deflected distal carinae of Arcovenator from Jas Neuf Sud, the largest teeth from Lafio,
and most of the Abelisauridae indet. lateral morphotypes from the Western Tremp
Syncline (Tortosa et al., 2014; Hendrickx et al. 2020; Isasmendi et al., 2022, 2024).
The distocentral denticle density of MG 73 is 20 denticles per five millimeters, which is
slightly higher than the range typically found in most Abelisauridae taxa that have 9 to
15 denticles per five millimeters (Hendrickx et al., 2020). The sub-quadrangular basal
distal denticles of MG 73 are similar in shape to those located at mid-crown in
Abelisaurus, Kryptops, Rugops, some Aucasaurus, and most Majungasaurus, differing
from the denticle shape present in Arcovenator, some teeth of Aucasaurus, and a few
crowns of Majungasaurus (Hendrickx et al., 2020). Although many abelisaurids exhibit
interdenticular sulci, MG 73 lacks them, similar to the condition present in the crowns
of Aucasaurus, Arcovenator, Rugops, and UCPC 10, which either lack these sulci or
have them restricted to the base of the distal denticles (Smith, 2007; Hendrickx et al.,
2020). Therefore, despite MG 73 exhibiting many abelisaurid traits, some features are
distinct from any previously described member of Abelisauridae, and hence, this crown
is regarded as Abelisauridae indet.

Arcovenator sp.
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The isolated tooth CH 168 from Chera 2 has traits present in abelisaurid teeth, including
an irregular and non-oriented enamel texture, CHR and CBR values, denticle shape,
denticle density, and the DSDI value (see Hendrickx et al., 2020). Furthermore, one of
the LDA classifies this specimen as Arcovenator. Nevertheless, the cladistic analyses do
not clarify the phylogenetic affinities of the Chera 2 specimen. This tooth lacks some
typical dental features found in most members of Abelisauridae (see Hendrickx et al.,
2020), such as a straight or gently convex distal profile, a mesial carina extending to the
cervix, or the characteristic arrangement of the carinae. The CBR is moderate for a
lateral tooth, a feature shared with Aucasaurus, Carnotaurus, Majungasaurus, some
teeth assigned to Arcovenator sp. from Lafio, and some teeth from Poyos (Hendrickx et
al., 2020; Isasmendi et al., 2022; Malafaia et al., 2025). Its CHR value is also moderate
(1.94), similar to those of Arcovenator, Chenanisaurus, and some lateral teeth of
Majungasaurus, among others (Hendrickx et al., 2020). Comparable CHR values are
also found in teeth assigned to Arcovenator sp. from Lafio and in lateral teeth belonging
to an abelisaurid closely related to Arcovenator from Poyos (Isasmendi et al., 2022;
Malafaia et al., 2025). Furthermore, among abelisaurid teeth, only those referred to
Arcovenator from Armuiia, Jas Neuf Sud, and Lafio, as well as those closely related to
Arcovenator from Poyos, exhibit an apex that extends beyond the basodistalmost point
of the crown (Tortosa et al., 2014; Hendrickx et al., 2020; Isasmendi et al., 2022;
Malafaia et al., 2015; this study).

The lateral crowns of abelisaurid theropods typically have mesial and distal carinae that
extend along the midline of the crown from the apex to the root (Hendrickx et al. 2020),
unlike the CH 168 tooth from Chera 2. Indeed, in this specimen the mesial carina is
straight, displaces mesiolingually toward the base, and extends from the apex to

approximately two-thirds of the crown. On the other hand, the distal carina reaches the
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cervix but is sigmoidal and labially deflected. This condition more closely resembles
that present in teeth referred to Arcovenator from the Jas Neuf Sud locality (Tortosa et
al., 2014; Hendrickx et al., 2020), the largest teeth assigned to Arcovenator from Lafio
(Isasmendi et al., 2022), and the morphotype 2 abelisaurid teeth from Poyos (Malafaia
etal., 2025).

Regarding the denticles, the DSDI value of the Chera 2 tooth is 1, similar to the teeth
referred to Arcovenator from Jas Neuf Sud and Lafio, as well as some specimens closely
related to this taxon from Poyos , but differing from some Arcovenator teeth, in which
the DSDI exceed 1.2 (Hendrickx et al., 2020; Isasmendi et al., 2022; Malafaia et al.,
2025). The mesiocentral denticle density of CH 168 (MC of 15 denticles per 5 mm) is
similar to the MC values of Abelisaurus and Arcovenator, while the distocentral
denticle density of the specimen studied here (DC of 15 denticles per 5 mm) more
closely resembles those of Arcovenator or Aucasaurus, whereas Abelisaurus teeth have
lower DC values (Tortosa et al., 2014; Hendrickx et al., 2020).

The outline of the denticles in CH 168 is symmetrically to slightly asymmetrically
convex as in Arcovenator teeth from Jas Neuf Sud and Lafio, the teeth from Poyos,
Skorpiovenator, and some abelisaurid teeth from the Cenomanian of northern Africa
(Richet et al.., 2013; Hendrickx et al., 2020; Isasmendi et al., 2022; Malafaia et al.,
2025). The CH 168 tooth further resembles the teeth of Arcovenator in exhibiting
subquadrangular or apicobasally subrectangular mesial denticles and mesiodistally
subrectangular distal denticles (Hendrickx et al., 2020; Isasmendi et al., 2022; Malafaia
et al., 2025). Therefore, based on the results of the morphometric analyses and the
morphological similarities of the CH 168 tooth with other Arcovenator teeth, this

specimen is assigned to Arcovenator sp.
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Postcranial remains.

Despite their fragmentary nature, the Lafo specimens exhibit several morphological
features that support their attribution to Abelisauroidea. The presence in MCNA 17433
of a centrodiapophyseal lamina on the transverse processes of the anterior and middle
caudal vertebrae allows it to be confidently referred to this clade (Méndez, 2014,
Tortosa et al., 2014), and Abelisauridae according to Baiano et al. (2023). In addition,
the neural arch is also broader than the mid-centrum, which is a feature shared with
Masiakasaurus and several abelisaurids (Baiano et al., 2023). In addition, the elliptical
shape of the articular surfaces of the caudal vertebra, the presence of a ventral
longitudinal groove on the centrum, and the lateral orientation of transverse process of
the anterior dorsal and the anterior to middle caudal vertebra and the fan-shaped
morphology of the transverse processes of the anterior dorsal vertebra allows these
specimens to be referred to Majungasaurinae. Furthermore, since the presence of
Arcovenator has previously been documented in Lafio (Isasmendi et al., 2022), these
remains are assigned to cf. Arcovenator sp., pending the discovery of additional
diagnostic material.

The horizontally projected transverse processes seen in MCNA 8366 are also present in
the anterior dorsals of Majungasaurus and Sinraptor (Currie and Zhao, 1993,
O’Connor, 2007) and differ from those of Allosaurus and Sigilmassasaurus (Madsen,
1976; Evers et al., 2015), in which the transverse processes are more ventrally
projected. Furthermore, the fan-shaped transverse processes, which are laterally
projected in MCNA 8366, are also seen in the anteriormost dorsal of Majungasaurus
and Sigilmassasaurus (O’Connor, 2007; Evers et al., 2015). The morphology of the
transverse process in the specimen from Lafio, with an anterior convex and posterior

straight edge that make the diapophysis project face laterally, is similar to that of
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Majungasaurus (UA 8678; fig. 3 of O’Connor, 2007) although in this taxon the anterior
convex edge is less pronounced. The posterior straight edge of the transverse processes
of MCNA 8366 differs from the concave edges and posterolaterally facing diapophysis
exhibited by the anteriormost dorsals of, for instance, Carnotaurus (MACN-CH 894),
Eoabelisaurus (MPEF PV 3990), Viavenator (MAU-Pv-LI-530; fig. 7D of Filipi et al.,
2018) and the indeterminate brachyrostran (MAU-Pv-LI-665; fig 6D of Méndez et al.,
2022). This indicates that this condition could be a majungasaurine synapomorphy.
Nevertheless, this hypothesis needs to be phylogenetically tested.

The ventral surface of the MCNA 17433 caudal vertebra exhibits a ventral longitudinal
groove, a feature also present in Allosaurus, Arcovenator, Aucasaurus, Ceratosaurus,
Majungasaurus, and Viavenator, as well as in many spinosaurids and megalosaurids
(e.g., Madsen, 1976; Madsen and Welles, 2000; O’Connor, 2007; Benson, 2010;
Méndez, 2014; Tortosa et al., 2014; Filippi et al., 2018; Malafaia et al., 2020). This
contrasts with some abelisaurids, such as Ekrixinatosaurus and Rajasaurus, which
exhibit a keeled ventral surface (Méndez, 2014). The presence of a centrodiapophyseal
lamina on the ventral surface of the preserved transverse processes is a feature shared
with Abelisauridae (e.g., Arcovenator, Aucasaurus, Carnotaurus, Ekrixinatosaurus,
Kurupi and Majungasaurus) and Masiakasaurus, but not with Allosaurus or
Ceratosaurus (Carrano et al., 2002; Coria et al., 2002; Calvo et al., 2004; O’Connor,
2007; Méndez, 2014; Tortosa et al., 2014; lori et al., 2021; Baiano et al., 2023).
Nevertheless, despite deformation, the bases of the transverse processes in MCNA
17433 do not appear to be strongly dorsally directed. This differs from many
abelisaurids such as Aucasaurus, Carnotaurus, Ekrixinatosaurus and Skorpiovenator,
and is more similar to the condition observed in Allosaurus, Arcovenator, Ceratosaurus,

Majungasaurus, and Rahiolisaurus (Madsen, 1976; Madsen and Welles, 2000;
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O’Connor, 2007; Méndez, 2014; Baiano et al., 2023). The anterior and posterior
articular facets of the MCNA 17433 caudal vertebra are close to elliptical in outline
(note that although the centrum appears strongly mediolaterally compressed, this is
likely a taphonomic artifact). This shape is more similar to that observed in
Arcovenator, Majungasaurus, Rajasaurus, and Sinraptor, and differs from the more
subcircular surfaces of, for instance, Allosaurus, Aucasaurus, Carnotaurus,
Ekrixinatosaurus, Ichthyovenator, Kurupi, Tyrannosaurus or Viavenator (Currie and
Zhao, 1993; Brochu, 2003; Wilson et al., 2003; O’Connor, 2007; Allain et al., 2012;
Méndez, 2014; Tortosa et al., 2014; Filippi et al., 2018; lori et al., 2021; Baiano et al.,
2023).

New contributions to the knowledge of European abelisaurids.

In the Late Cretaceous European archipelago, skeletal remains of mid- to large-bodied
theropods have been recovered in Central and Western Europe (e.g., Osi et al., 2010;
Osi and Buffetaut, 2011; Tortosa et al., 2014; Isasmendi et al., 2022; Buffetaut et al.,
2024). Among these remains, indeterminate tetanurans and abelisaurids have been
identified. In the central European region, specifically at the Santonian site of Iharkdt in
Hungary and the Campanian site of Styria in Austria, teeth assigned to early-branching
indeterminate tetanurans have been recovered (Osi et al., 2010, 2012). Additionally, the
Iharkut site has yielded further theropod remains referred to Abelisauridae (Osi et al.,
2010; Osi and Buffetaut, 2011), indicating that two mid- to large-sized theropod clades
coexisted in Central Europe during the Santonian. However, the scarce theropod
remains in this area makes it challenging, at this moment, to provide a more accurate
interpretation of the phylogenetic relationships of this fauna. Western Europe, on the

other hand, appears to lack mid- to large-bodied early-branching tetanurans, with
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Abelisauridae representing the main apex predator (e.g., Csiki-Sava et al., 2015;
Isasmendi et al., 2022; Buffetaut et al., 2024; Malafaia et al., 2025).

Abelisaurid theropods have historically been interpreted as biogeographical indicators
of Gondwanan affinities within Late Cretaceous European dinosaur assemblages
(Buffetaut et al., 1988; Le Loeuff and Buffetaut, 1991; Csiki-Sava et al., 2015). Current
evidence supports the persistence of multiple abelisauroid lineages within the European
archipelago up to the latest Cretaceous (Carrano and Sampson, 2008; Tortosa et al.,
2014; Buffetaut et al., 2024; Buffetaut, 2025). Based on the French fossil record,
Tortosa et al. (2014) proposed that small-bodied abelisaurids likely originated from an
Albian lineage of early-branching abelisaurids represented by Genusaurus sisteronis
from Provence, which subsequently diversified into distinct lineages. It should be noted
that this taxon has, however, been variably interpreted as a noasaurid (e.g., Carrano and
Sampson, 2008), an early-branching abelisaurid (e.g., Tortosa et al., 2014; Baiano et al.,
2023), or an abelisaurid more closely related to Furileusauria (Buffetaut et al., 2024;
Buffetaut, 2025).

The Cenomanian fossil record of Ibero-Armorica is scarce and currently consists of the
considerably incomplete Caletodraco cottardi from the early Cenomanian glauconitic
Chalk of Normandy (Buffetaut et al., 2024) (Fig. 9, loc. 1). This taxon, which is known
from ilia, some axial elements and a possible tooth, was interpreted as a furileusaurian
brachyrostran, potentially reflecting a more intricate evolutionary history of European
abelisaurids, with the presence of different abelisaurid lineages in Ibero-Armorica
(Buffetaut, 2024; Buffetaut et al., 2024; Malafaia et al., 2025). Other Cenomanian
abelisaurid remains from France and Spain include isolated teeth from Algora (Segovia,
Spain), “La Buzinie” (Charentes, France), and Limanes (Asturias, Spain). The isolated

theropod teeth from Algora (Utrillas Formation) (Fig. 9, loc. 4), were initially referred
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to Carcharodontosauridae indet. (Torices et al., 2012) before being reassigned to cf.
Abelisauridae by Pérez-Garcia et al. (2020). Additionally, a medium- to large-sized
caudal vertebra (ALG 192) from the same site was attributed to Theropoda indet.
(Pérez-Garcia et al., 2020). Two other isolated teeth (MA BZN 1 and 2) from the “La
Buzinie” locality (Fig. 9, loc. 2) were similarly assigned to Carcharodontosauridae by
Vullo et al., 2007 before being reassigned to cf. Abelisauridae indet. by Malafaia et al.
(2025), based on their crown ornamentation and denticle densities. Another isolated
tooth from the Cenomanian La Manjoya Fm in the Limanes municipality (Fig. 9, loc. 3)
was also identified as Theropoda indet. closely related to Carcharodontosauridae (Ruiz-
Omefiaca et al., 2009). Malafaia et al. (2025) agreed on the morphometric affinities
suggested by Pérez-Garcia et al. (2020) for the teeth from Algora, Charentes, and
Limanes. The Limanes tooth belongs to a mid-sized theropod. The apex of the crown
does not seem to have extended beyond its basodistalmost point (Ruiz-Omefiaca et al.,
2009; fig. 2a and b), both mesial and distal margins are convex in lateral view (Ruiz-
Omeriaca et al., 2009), the distal denticles are asymmetrically convex and apically
inclined, and the enamel exhibits an irregular texture, all features present in
Abelisauridae but absent in Carcharodontosauridae (Hendrickx et al., 2019, 2020). The
mesial carina is mesiolingually oriented (Ruiz-Omefiaca et al., 2009; fig. 2c), being
straight and centered apically but displaced lingually to the base, as in the first
premaxillary tooth of Abelisauridae, some teeth that may belong to Abelisaurus (MPCA
1, 5 and 267; see Hendrickx et al., 2020), Abelisauridae indet. morphotype 1 tooth from
the Western Tremp Syncline and Poyos, as well as in the lateral teeth of Arcovenator
and closely related specimens from Poyos (Hendrickx and Mateus, 2014, Tortosa et al.,
2014; Hendrickx et al., 2020; Isasmendi et al., 2022, 2024; Malafaia et al., 2025). Ruiz-

Omefiaca et al. (2009) indicate a mesial denticle density of 2 denticles/mm and a distal

37



894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

denticle density of 2.22 denticle/mm (giving a DSDI value of 0.9). However, these
measurements were taken from different positions along the crown, which compromises
their comparability. The inferred MA is 14 denticles per five mm and the DA is 12.5
denticles per five mm. Furthermore, an accurate DSDI value cannot be calculated
because the distal carina is not preserved at mid-crown. Therefore, based on the
combination of features shared with Abelisauridae, this tooth is here regarded as
Abelisauridae indet. These findings suggest that carcharodontosaurians were already
extinct in Ibero-Armorica by the Cenomanian and that abelisaurids had become the apex
theropods in those ecosystems.

No abelisaurid or large-sized theropod remains that may belong to Abelisauridae have
been recovered to date from the Turonian, Coniacian, or Santonian of the Ibero-
Armorican landmass. In the Campanian—Maatrichtian Viso locality (Beira Litoral,
Portugal) (Fig. 9, loc. 5), several theropod remains were reported and figured by
Antunes and Sigogneau-Russell (1992) and Galton (1996). Among the Viso theropod
material, tooth VI 1 (Antunes and Sigogneau-Russell, 1992; pl. |, fig. 5) was initially
referred to as Theropoda indet. However, due to its considerable size, it may be
attributable to Abelisauridae as the herein studied tooth from Viso (MG 73). The MG 73
specimen had previously been identified as Megalosaurus sp. (Sauvage, 1897-1898),
Megalosaurus cf. pannoniensis (Lapparent and Zbyszewski, 1957), and Theropoda
indet. (Malafaia et al., 2024). Nonetheless, the morphological characteristics exhibited
by this specimen warrant its reassignment to Abelisauridae indet., representing the first
unequivocal abelisaurid remain from the Cretaceous of Portugal.

Theropod remains are relatively rare in lower Campanian deposits of Ibero-Armorica.
At the Lambeau du Beausset locality in Var (France) (Fig. 9, loc. 6), the abelisaurid

Tarascosaurus was erected based on fragmentary material (Le Loeuff and Buffetaut,
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1991). This taxon has since been regarded as nomen dubium (Rauhut, 2003; Allain and
Pereda-Suberbiola, 2003) or referred to Abelisauroidea incertae sedis (Carrano and
Sampson, 2008). Nevertheless, it was recovered as an early-branching member of
Abelisauridae in the phylogenetic analyses performed by Tortosa et al. (2014).
Additional material from the Iberian Peninsula, specifically femora from the Lafio site
(Fig. 9, loc. 11), has been compared to Tarascosaurus (Le Loeuff and Buffetaut, 1991,
Le Loeuff, 1992), but no definitive evidence currently supports this attribution
(Isasmendi et al., 2021, 2022; Malafaia et al., 2025).

The middle and upper Campanian abelisaurid record in France and Spain is
comparatively richer. In Provence, indeterminate abelisaurid remains have been
reported from the Trets-La Boucharde site (Fig. 9, loc. 7), Velaux-Bastide Neuve (Fig.
9, loc. 8), and the Fox-Amphoux area (Fig. 9, loc. 9) (Tortosa et al., 2014). The Trets-La
Boucharde specimen from the “Begudian fluvio-lacustrine sandstones” was previously
described as an abelisauroid (Allain and Pereda-Suberbiola, 2003), and it is currently
regarded as an indeterminate abelisaurid by various authors (Carrano and Sampson,
2008; Tortosa et al., 2014). The abelisaurid remains reported by Tortosa et al. (2014)
from Velaux-Bastide Neuve (“Begudian sandstones”; Garcia et al., 2010; Cincotta et al.,
2015) and the Fox-Amphoux area (middle—late Campanian to early Maastrichtian?
“Grés a reptiles”) comprise a set of isolated teeth that are yet to be published.
Arcovenator escotae was erected based on a set of cranial, axial and appendicular
elements recovered from the upper Campanian Pourriéres-Jas Neuf Sud locality (Fig. 9,
loc. 10) of the lower “Argiles rutilantes” Fm (Tortosa et al., 2014). This is the most
complete European abelisaurid currently known and has been classified as a
majungasaurine (Tortosa et al., 2014). In addition to the holotype and several referred

specimens reported by Tortosa et al. (2014), other skeletal elements from Upper
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Cretaceous deposits of France and the Iberian Peninsula have also been assigned to
Arcovenator or closely related forms (Tortosa et al., 2014; Pérez-Garcia et al., 2016;
Isasmendi et al., 2022; Malafaia et al., 2025). This is the case of the late Campanian to
early Maastrichtian Pourcieux specimen from the Les Tuillieres site (“Rognacian”
coarse sandstone) (Fig. 9, loc. 15) in Provence. This specimen was first regarded as
Abelisauridae (Buffetaut et al., 1998, Rauhut, 2003), and Abelisauridae indet. or
Carcharodontosauridae (Carrano and Sampson, 2008), before Tortosa et al. (2014)
referred it to ?Arcovenator sp. The coeval “Grés a reptiles” red beds of Cruzy in
Languedoc (Fig. 9, loc. 14) has yielded several teeth as well as cranial and postcranial
fragmentary remains, which may be attributable to medium- to large-sized abelisaurids
(Buffetaut et al., 1999; Buffetaut, 2005; Osi and Buffetaut, 2011; Tortosa et al., 2014),
possibly related to Arcovenator (Tortosa et al., 2014). In the Iberian Peninsula, isolated
teeth from Lafio (County of Trevifio), Armufia (Segovia), Chera 2 (Valencia), and
Poyos (Guadalajara) were assigned to Arcovenator or closely related forms (Pérez-
Garcia et al., 2016; Isasmendi et al., 2022; Malafaia et al., 2025; this work). The largest
set of isolated teeth assigned to Arcovenator sp. come from the upper Campanian
Sedano Fm of Lafo (Fig. 9, loc. 11) (Isasmendi et al., 2022), which has also yielded
additional postcranial theropod remains. It must be noted that a dorsal neural arch
previously assigned to Rhabdodon (Pereda-Suberbiola and Sanz, 1999) and the caudal
vertebra herein described can be referred to cf. Arcovenator. The coeval Vegas de
Matute Fm of Armufa (Fig. 9, loc. 12) and Sierra Perenchiza Fm of Chera 2 (Fig. 9, loc.
13) have also yielded several isolated teeth referred to cf. Arcovenator and Arcovenator
sp., respectively (Pérez-Garcia et al., 2016; Company et al., 2005; this work). It is worth
noting that the isolated tooth was subject of varying taxonomic interpretations, having

been referred to Theropoda indet. (Company, 2005), ?Neoceratosauria indet. (Company
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et al., 2009), and cf. Arcovenator (Isasmendi et al., 2022). Additionally, the pedal
ungual phalanges recovered from the Armufa site were initially assigned to Theropoda
indet. (Pérez-Garcia et al., 2016) and later reinterpreted as Abelisauridae indet.
(Isasmendi et al., 2024). Two dental morphotypes from the late Campanian—early
Maastrichtian Poyos site (Villalba de la Sierra Fm; Gil et al., 2004; Ortega and Pérez-
Garcia, 2009) (Fig. 9, loc. 18) were described and referred to an abelisaurid closely
related to Arcovenator by Malafaia et al. (2025). This site has additionally yielded non-
dental theropod remains initially referred to Abelisauroidea indet. (Ortega et al., 2019;
Pérez-Garcia et al., 2019) and later to Abelisauridae indet. (Malafaia et al., 2025),
pending further detailed studies. Some theropod remain from the Lo Hueco site (Fig. 9,
loc. 17) were regarded as Theropoda indet. whereas others were referred to
Abelisauridae indet. (Ortega et al., 2015, 2022).

The abelisaurid fossil record from the Maastrichtian is comparatively less abundant than
that from the Campanian (Isasmendi et al., 2024). The early Maastrichtian Montrebei
site (La Posa Formation; 'Grey Garumnian' of the Tremp Group; Fondevilla et al., 2019)
of the Tremp Syncline (Fig. 9, loc. 20) in Lleida (Iberian Peninsula) yielded an isolated
tooth initially assigned to Theropoda indet. (Torices et al., 2015), but its subsequent
restudy has permitted its referral to Abelisauridae indet. In the western section of the
Tremp Syncline, abelisaurid teeth were also reported from the late Maastrichtian Blasi
1, 2B and 3 (Fig. 9, loc. 21) and the latest Maastrichtian 172-i/04/e (Fig. 9, loc. 22)
sites, located at the top of the Arén Sandstone and the lower part of the Tremp Group
(“Grey Garumnian”) (Canudo et al., 2016; Puértolas-Pascual et al., 2018; Isasmendi et
al., 2024). Several teeth from the Blasi sites, along with the specimen from 172-i/04/e,
were previously referred to Theropoda indet. by Torices et al. (2015) and Puértolas-

Pascual et al. (2018) and later assigned to three different Abelisauridae indet.
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morphotypes by Isasmendi et al. (2024). At the Cassagnau 1 locality (Fig. 9, loc. 16),
situated within the late Maastrichtian Auzas Marls Fm in Haute-Garonne, an isolated
tooth, originally referred to Theropoda indet. by Laurent (2003), was later reinterpreted
as belonging to Abelisauridae by Csiki-Sava et al. (2015). In addition to isolated teeth,
the Maastrichtian French deposits have yielded several indeterminate abelisaurid
postcranial remains. These are the limb bones (femur and tibia) initially assigned to
Neoceratosauria by Valentin et al. (2012), recovered at the Vitrolles-La Plaine site (Fig.
9, loc. 19) from the “Rognacian clays and mottled marls” deposits in Bouches-du-
Rhone. This site has been dated as possibly late Maastrichtian (\Valentin et al., 2012) or
also as late Campanian—early Maastrichtian (Fondevilla et al., 2019).

Taken together, the abelisaurid fossil record across Ibero-Armorica reveals a complex
and temporally extensive presence of this clade, spanning from the Albian to the latest
Maastrichtian, with a roughly 10-million-year gap during the Turonian—Santonian
without any abelisaurid fossil record. Despite their relatively fragmentary nature, these
remains, ranging from isolated teeth to partial skeletons, provide compelling evidence
for the persistence and diversification of abelisaurids within the European archipelago
throughout the Late Cretaceous. The distribution of taxa such as Genusaurus,
Caletodraco, Arcovenator, and additional indeterminate forms suggests multiple
evolutionary lineages, potentially some of them stemming from an Albian stock and
others likely representing subsequent dispersal events, undergoing insular
diversification through the Late Cretaceous. Moreover, the taxonomic revisions of
previously misassigned material emphasize the need for ongoing reevaluation of
fragmentary theropod remains. Such efforts are crucial to refine our understanding of

abelisaurid paleobiogeography and systematics in Europe.
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CONCLUSIONS

The systematic, morphometric and cladistic studies carried out with the tooth sample
from late Campanian Chera 2 (Valencia), early Maastrichtian Montrebei (Lleida) and
Campanian—Maastrichtian Viso (Beira Litoral) localities from the Iberian Peninsula
have allowed to reassign these elements to abelisaurids. Although incomplete, the
Montrebei (DPM-MON-T10 1) and Viso (MG 73) specimens differ from the dentition
of the already erected members of Abelisauridae. On the other hand, the crown-shape,
disposition of the carinae and denticle shape exhibited by CH 168 tooth from Chera 2
are similar to those found in Arcovenator teeth. Hence, the Montrebei and Viso teeth are
now considered to belong to Abelisauridae indet., while the Chera 2 specimen is
attributed to Arcovenator sp. In addition, the postcranial remains (axial elements)
recovered from the Lafio site (County of Trevifio) are here regarded to as an abelisaurid,
mainly based on the presence of a centrodiapophyseal lamina on the preserved
transverse process in the caudal vertebra (MCNA 17433). In addition, the shape and
orientation of the transverse processes of the dorsal and caudal vertebrae suggest
majungasaurine affinities. Therefore, these features, together with the presence of
Arcovenator teeth in the site, allow us to assign these elements to cf. Arcovenator. The
revision of the Lafo postcranial remains has allowed to refute earlier interpretations that
assigned the anterior dorsal neural arch (MCNA 8366) to Rhabdodon. Furthermore, the
Viso isolated tooth, now assigned to Abelisauridae indet., is the first unequivocal
abelisaurid remain from Portugal.

The fossil record indicates that abelisaurids were among the most prevalent theropod
groups in the Late Cretaceous faunas across the Ibero-Armorican landmasses. Indeed,
the reclassification of mid- to large-sized isolated teeth from Ibero-Armorica as

belonging to abelisaurids, rather than to carcharodontosaurids or closely related forms,
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1044 indicates that carcharodontosaurians were likely extinct in Ibero-Armorica by the

1045 Cenomanian, and that abelisaurids had already taken over as the dominant large

1046 theropods in those ecosystems.

1047  The abelisaurid fossil record from Ibero-Armorica reveals a complex and temporally
1048 extensive presence of this clade, spanning from the Albian to the latest Maastrichtian,
1049  with a significant gap of approximately 10 million years during the Turonian—

1050 Santonian, in which no abelisaurid fossils have been found yet. Despite the generally
1051 fragmentary nature of these remains, ranging from isolated teeth to partial skeletons,
1052 they provide strong evidence for the persistence and diversification of abelisaurids
1053 across the European archipelago. The distribution of taxa such as the noasaurid or

1054  possibly furileusaurian Genusaurus, the putative furileusaurian Caletodraco, the

1055 majungasaurine Arcovenator, and other indeterminate forms suggests the presence of
1056 multiple evolutionary lineages, some potentially originating from an Albian stock, while
1057  others might have resulted from several dispersal events, undergoing insular

1058 diversification throughout the Late Cretaceous. Additionally, the taxonomic revisions of
1059 previously misclassified material underscore the need to continuously reevaluate

1060 fragmentary theropod remains, thereby refining our understanding of abelisaurid

1061 paleobiogeography and systematics in Europe.
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Supplementary material 2. Nexus file of the dental matrix.

Supplementary material 3. Abelisauridae and possible Abelisauridae occurrences and
locality list for the Upper Cretaceous of the Ibero-Armorican Domain.

Figure captions

Figure 1. Geologic and chronostratigraphic setting of the uppermost Cretaceous fossil
sites where the studied remains were recovered. 1, map of the Iberian Mesozoic basins
showing the locations of the Chera 2, Lafio, Montrebei, and Viso fossil sites (modified
from Gomez et al., 2019); and 2, chronostratigraphic position of the Chera 2, Lafio,
Montrebei and Viso fossil sites.

Figure 2. Abelisauridae indet. teeth from Montrebei and Viso. Morphotype 1 (DPM-
MON-T10 1) 1, mesial denticles; crown in 2, mesial; 3, lingual; 4, distal; and 5, labial
views; 6, close up of enamel texture; and 7, basal cross section in basal view.
Morphotype 2 (MG 73) tooth in 8, mesial; 9, lingual; 10, distal; 11, labial; and 12, basal
views (modified from Malafaia et al., 2024). Abbreviations: cv, cervix; dt, denticle; mc,
mesial carina; dc, distal carina; dl, dentine layer; iet, irregular enamel texture; pc, pulp
cavity; tu; transverse undulation. Scale bar equals 1 cm, except for denticles and texture
(5 mm).

Figure 3. cf. Arcovenator axial elements from Lafio. Anterior dorsal vertebra (MCNA
8366) in 1, posterior; 2, lateral; 3, anterior; and 4; dorsal views. Caudal vertebra
(MCNA 17433) in 5, ventral; 6, anterior; 7, lateral; and 8, posterior views.
Abbreviations: cdl, centrodiapophyseal lamina; fch, facet for chevron; ns, neural spine;
poz, postzygapophysis; tp, transverse process; vg, ventral groove. Scale bar equals 5
cm.

Figure 4. Arcovenator sp. tooth from Chera 2 (CH 168). 1, mesial denticles; crown in

2, mesial; 3, lingual; 4, distal; 5, labial; and 6, basal views. 7, close up of enamel
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texture; and 8, distal denticles. Abbreviations: dt, denticle; mc, mesial carina; dc, distal
carina; dl, dentine layer; iet, irregular enamel texture; pc, pulp cavity. Scale bar equals 1
cm, except for denticles and texture (5 mm).

Figure 5. Graphical results of the LDAs (LDA 1 and 3) carried out at the clade-level. 1,
LDA performed using database 1 at clade-level. Axis 1 accounts for 47.67 % of the
variance (Eigenvalue = 2.6735), and Axis 2 accounts for 24.67 % of the variation
(Eigenvalue = 1.3703). 2, LDA performed using database 2 at the clade-level. Axis 1
accounts for 55.62 % of the variance (Eigenvalue = 2.6056), and Axis 2 for 30.06 % of
the variation (Eigenvalue = 1.4081). Silhouettes courtesy of Scott Hartman.

Figure 6. Graphical results of the LDA performed with the Ibero-Armorican abelisaurid
teeth (database 3). Axis 1 accounts for 49.29 % of the variance (Eigenvalue = 2.8359),
and Axis 2 for 26.72 % of the variation (Eigenvalue = 1.5371).

Figure 7. Results of the phylogenetic analyses performed for specimens MG 73 and
CH 168 based on the dentition-based data matrix (constrained search) of Hendrickx et
al. (2020). 1, simplified single MPT (CI = 0.203; RI = 0.542) obtained from the
phylogenetic analysis, showing the position of specimen MG 73 from Viso (highlighted
in bold). 2, simplified consensus tree (Cl = 0.199; RI = 0,452) obtained from five MPTs
recovered in the phylogenetic analysis, showing the position of specimen CH 168 from
Chera 2 (highlighted in bold).

Figure 8. Simplified strict consensus tree (Cl = 0.1809; RI = 0.376) obtained from
seven MPTs recovered in the phylogenetic analysis based on the dentition-based data
matrix (constrained search) of Hendrickx et al. (2020), showing the position of DPM-
MONT-T1 1 from Montrebei (highlighted in bold).

Figure 9. Paleogeographic and temporal distribution of the currently known Ibero-

Armorican abelisaurids and large-sized theropod remains that likely belong to
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Abelisauridae. 1, map of the Ibero-Armorican Mesozoic basins (modified from
Buffetaut et al., 2024; Malafaia et al., 2025) showing the location where Late
Cretaceous Ibero-Armorican abelisaurid or large-sized theropod remains have been
recovered. 2, chronological distribution of the Late Cretaceous abelisaurids or large-
sized theropods that may be identified as Abelisauridae (modified from Tortosa et al.,

2014). Abelisaurid- or large-size theropod-bearing sites or areas: 1, Saint-Jouin-

Bruneval; 2, “La Buzinie”; 3, Limanes; 4, Algora; 5, Viso; 6, Lambeau du Beausset; 7,

Trets-La Boucharde; 8, Velaux-La Bastide Neuve; 9, Fox-Amphoux; 10, Pourrieres-Jas

Neuf Sud; 11, Lafio; 12, Armufia; 13, Chera 2; 14, Cruzy; 15, Pourcieux-Les Tuillieres;

16, Cassagnau 1; 17, Lo Hueco; 18, Poyos; 19, Vitrolles-La Plaine; 20, Montrebei; 21,

Blasi; 22, 172-i/04/e.
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TABLE 1. Results of the discriminant analyses performed with database 1, 2 and 3. Databases in

Supplementary material 1.
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