

This file is an uncorrected accepted manuscript (i.e., postprint). Please be aware that this version will change during the production process. This postprint will be removed once the paper is officially published. All legal disclaimers that apply to the journal pertain.

Submitted: 29 June 2025 - Accepted: 17 September 2025 - Posted online: 30 September 2025

To link and cite this article:

doi: 10.5710/AMGH.17.09.2025.3654

PLEASE SCROLL DOWN FOR ARTICLE

1 ISOLATED ABELISAURID TEETH FROM GONDWANA AND DENTAL

2 EVOLUTION IN ABELISAURIDAE

3

- 4 CHRISTOPHE HENDRICKX^{1,2}, MATÍAS SOTO NÚÑEZ³, RICARDO ARAÚJO⁴, JORGE
- 5 GUSTAVO MESO^{5,6}, SIMONE MAGANUCO⁷, AND ADÉ BEN-SALAHUDDIN⁸

6

- ¹Dinosauria Lab, Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán 4000,
- 8 Tucumán, Argentina; christophendrickx@gmail.com ORCID: 0000-0002-8500-2405
- ²Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, Miguel Lillo 251, San Miguel
- de Tucumán 4000, Tucumán, Argentina
- ³Instituto de Ciencias Geológicas, Facultad de Ciencias, Iguá 4225, Montevideo 11400,
- 12 Uruguay; msoto@fcien.edu.uy
- 13 ⁴Centro de Recursos Naturais e Ambiente (CERENA), Universidade de Lisboa, Lisboa,
- 14 Portugal; ricardo.araujo@tecnico.ulisboa.pt ORCID: 0000-0001-5058-2983
- ⁵Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro,
- 16 Río Negro, Argentina; jgmeso@unrn.edu.ar ORCID: 0000-0002-5522-8569
- 17 ⁶IIPG UNRN, Consejo Nacional de Investigaciones científicas y Tecnológicas (CONICET),
- 18 Av. Roca 1242, General Roca, Río Negro, Argentina
- ⁷Sezione di Paleontologia dei Vertebrati, Museo di Storia Naturale di Milano, Milan, Italy;
- 20 simonemaganuco@iol.it ORCID: 0000-0002-5502-5075
- ⁸Southern Connecticut State University, 501 Crescent St, New Haven, CT 06515, USA.
- bensalahuda1@southernct.edu

23

24 90 pag. (text + references); 16 figs.; 2 tables

- 26 Running Header: HENDRICKX ET AL.: ABELISAURID TEETH FROM GONDWANA.
- 27 Short Description: We here describe several isolated abelisaurid teeth of stratigraphic and
- 28 historic importance using cladistic and machine learning analyses. We also explore dental
- 29 evolution in Abelisauridae.

30

31 Corresponding author: Christophe Hendrickx; email: christophendrickx@gmail.com

32 **Abstract.** Abelisauridae were medium to large-bodied carnivorous dinosaurs with short 33 ornamented skulls, poorly recurved ziphodont teeth, and reduced forelimbs. They were the 34 dominant terrestrial carnivores in many Gondwanan ecosystems during the Cretaceous and 35 the apex predators in South America, Africa, India, and Europe in the latest part of the Cretaceous. Their Jurassic origin, primarily based on the putative abelisaurid *Eoabelisaurus* 36 37 from the Early Jurassic of Patagonia, remains debated, with many authors considering 38 Abelisauridae as a strictly Cretaceous theropod radiation. Here we describe several 39 historically and stratigraphically important isolated theropod teeth from Gondwana identified 40 as belonging to abelisaurids using new cladistic and machine learning methods. Dental 41 evolution in Abelisauridae was additionally explored using an updated version of a dentition-42 based data matrix focused on ceratosaurs. Results of this study shows that the evolution of the 43 dentition in abelisaurids was marked by a decrease in size of the mesialmost dentary teeth and 44 the displacement of the tallest crowns towards the middle part of the maxilla. Two isolated 45 abelisaurid teeth from the Late Cretaceous of India and Patagonia were also identified as the 46 earliest published record of a non-avian theropod in Asia and an abelisaurid in Argentina, 47 respectively. More importantly, isolated theropod teeth confidently referred to Abelisauridae 48 from the Middle Jurassic of Madagascar provide additional support for the emergence of this 49 clade in Gondwana before the Late Jurassic and reveal that the acquisition of abelisaurid 50 dental traits occurred early in the evolutionary history of one of the most successful radiations 51 of non-avian theropods from Europe and the Southern Hemisphere. 52 **Keywords.** Theropoda. Ceratosauria. Crown. Dentition. Southern Hemisphere. 53 Resumen. Los abelisáuridos eran dinosaurios carnívoros de tamaño mediano a grande con 54 cráneos cortos y ornamentados, dientes zifodontos poco recurvados y extremidades delanteras 55 reducidas. Fueron los carnívoros terrestres dominantes en muchos ecosistemas de Gondwana

durante el Cretácico y los superdepredadores en Sudamérica, África, India y Europa en los

pisos superiores del Cretácico. Su origen jurásico, basado principalmente en el supuesto abelisáurido Eoabelisaurus del Jurásico temprano de la Patagonia, sigue siendo objeto de debate, ya que muchos autores consideran que los Abelisauridae son una radiación de terópodos estrictamente cretácica. Aquí describimos varios dientes de terópodos aislados de Gondwana, importantes desde el punto de vista histórico y estratigráfico, que se han identificado como pertenecientes a abelisáuridos mediante nuevos métodos cladísticos y de aprendizaje automático. La evolución dental en los abelisáuridos se exploró adicionalmente utilizando una versión actualizada de una matriz de datos basada en la dentición centrada en los ceratosaurios. Los resultados de este estudio muestran que la evolución de la dentición en los abelisáuridos se caracterizó por una disminución del tamaño de los dientes dentarios más mesiales y el desplazamiento de las coronas más altas hacia la parte media del maxilar. También se identificaron dos dientes aislados de abelisáuridos del Cretácico Superior de la India y la Patagonia como el registro más antiguo publicado de un terópodo no aviano en Asia y un abelisáurido en Argentina, respectivamente. Más importante aún, slos dientes aislados de terópodos que se atribuyen con certeza a los Abelisauridae del Jurásico Medio de Madagascar proporcionan un respaldo adicional a la aparición de este clado en Gondwana antes del Jurásico Tardío y revelan que la adquisición de los rasgos dentales de los abelisáuridos se produjo en una etapa temprana de la historia evolutiva de una de las radiaciones más exitosas de terópodos no aviares de Europa y el hemisferio sur.

76 **Palabras clave.** Terópodos. Ceratosauria. Corona. Dentición. Hemisferio Sur.

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

FOR NEARLY 135 MILLION YEARS, throughout the Jurassic and Cretaceous, the role of apex predators in terrestrial ecosystems was essentially played by two groups of theropod dinosaurs, non-neocoelurosaur averostrans (e.g., dilophosaurids, ceratosaurs, megalosauroids, allosauroids, and tyrannosauroids) and, to a lesser extent, dromaeosaurids (e.g., unenlagiines and dromaeosaurines). In the Late Cretaceous, while this trophic guild was mainly dominated (if not monopolized) by the eponymous tyrannosaurids and their closest relatives in Asiamerica (Holtz, 2021), several medium to large-bodied theropods (>5m in body length), namely abelisaurids, spinosaurids, carcharodontosaurids, megaraptors, and unenlagiine dromaeosaurids, were often competing at the top of the food chain in Gondwana (Novas et al., 2013; Ezcurra and Novas, 2016; Ibrahim et al., 2020; Holtz, 2021). The extinction of spinosaurids and carcharodontosaurids, the largest land predators from the Southern Hemisphere, in the Cenomanian and Turonian, respectively (Novas et al., 2005; Candeiro et al., 2017; Delcourt and Grillo, 2018; Delcourt et al., 2020; Meso et al., 2021b; Canale et al., 2022; n.b., spinosaurids may have nonetheless persisted in western South America up to the end of the Cretaceous; Olmedo-Romaña et al., 2025), gave abelisaurids the opportunity to fully dominate this trophic niche in Europe, Africa (including Madagascar), and India during the remaining of the Cretaceous (Wilson et al., 2003; Novas et al., 2004; Rogers et al., 2007; Tortosa et al., 2014; Longrich et al., 2017; Buffetaut, 2024), while also competing with various large-sized megaraptors and unenlagiines in South America (n.b., apex theropods from Antarctica and Australia remain largely unknown in the latest Cretaceous and, to date, no abelisaurid fossils have been recovered from these continents; Novas et al., 2013; Holtz, 2021; Baiano et al., 2022; Pol et al., 2024).

Abelisauridae were medium to large-bodied carnivorous ceratosaurs (5–9 m) with deep ornamented skulls, short rounded snouts, and reduced forelimbs (Pol and Rauhut, 2012; Hendrickx *et al.*, 2015a; Grillo and Delcourt, 2017; Delcourt, 2018; Cerroni *et al.*, 2022a).

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Their stratigraphic origin remains controversial owing to the disputed phylogenetic position of Eoabelisaurus from the Toarcian (Early Jurassic) of Patagonia, either as an early branching abelisaurid (Pol and Rauhut, 2012; Baiano et al., 2023; Pol et al., 2024), pushing the origin of Abelisauridae to the Early Jurassic; or an early branching non-abelisaurid neoceratosaur/abelisauroid, restricting Abelisauridae to the Cretaceous or the Late Jurassic and Cretaceous (Tortosa et al., 2014; Wang et al., 2017; Agnolín et al., 2022). Nonetheless, abelisaurids were a key component of many dinosaur biota in Europe and Gondwana during the Cretaceous as their remains have been abundantly recovered from Cretaceous deposits of southwestern Europe (Buffetaut et al., 1988; Tortosa et al., 2014; Buffetaut, 2025a), Africa (Sereno et al., 2004; Mahler, 2005; Sereno and Brusatte, 2008; Longrich et al., 2017), Madagascar (Sampson et al., 1998; Ratsimbaholison et al., 2016), India (Wilson et al., 2003; Novas et al., 2004), and South America, where they were particularly abundant and diversified (e.g., Canale et al., 2009; Novas et al., 2013; Ezcurra and Novas, 2016; Zaher et al., 2020; Pol et al., 2024). Even though the dentition of abelisaurids exhibits the classic ziphodont morphology characteristic of most carnivorous theropods, abelisaurid teeth are particularly diagnostic, displaying several apomorphic dental features (Smith, 2007; Hendrickx and Mateus, 2014; Hendrickx et al., 2020a). Abeliasurid dentition is typically characterized by subrectangular alveoli in an "en echelon disposition" in the maxilla, biconvex mesialmost crowns with a salinon-cross section outline created by two concave surfaces adjacent to the carinae, and poorly curved lateral crowns with a straight to convex distal profile. In most abelisaurids, the crowns also have mesial and distal carinae reaching the cervix and centrally positioned mesial and distal carinae on their respective mesial and distal margins. Abelisaurid crowns also often show apically hooked denticles, well-developed interdenticular sulci, marginal and/or transverse undulations, and an irregular surface texture of the enamel (Smith, 2007;

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

127 Hendrickx et al., 2020a). Such a combination of diagnostic abeliasurid dental features have 128 helped many authors to recognize their presence in many Mesozoic ecosystems such as the 129 Late Jurassic of Uruguay (Soto et al., 2023), Portugal (Hendrickx and Mateus, 2014) and 130 possibly Brazil (Ribeiro et al., 2025), the Early Cretaceous of Brazil (de Carvalho and 131 Santucci, 2018; Sales et al., 2018; Ribeiro et al., 2022, 2023, 2024b) and Libya (Smith and 132 Dalla Vecchia, 2006), and the Late Cretaceous of Africa (Smith and Lamanna, 2006; Fanti 133 and Therrien, 2007; Ibrahim et al., 2020; Hendrickx et al., 2023), India (Prasad et al., 2016), 134 South America (e.g., Meso et al., 2021a, 2024; Juarez et al., 2023; Candeiro et al., 2024; 135 Delcourt et al., 2024; Ribeiro et al., 2024a, 2024b), and Europe (Isasmendi et al., 2022, 2024; 136 Malafaia et al., 2025). 137 This contribution aims to: i) describe and identify stratigraphically and historically 138 important isolated theropod teeth from Gondwana, either tentatively referred to Abelisauridae 139 or having abelisaurid dental traits, from Middle Jurassic, Late Jurassic, and Late Cretaceous 140 deposits (Figs. 1-2); ii) examine the dental evolution of abelisaurids throughout the 141 Cretaceous based on an updated version of a dentition-based data matrix focused on 142 ceratosaurs; and iii) implement a more robust and improved machine learning approach with 143 new algorithms and pipeline. 144 Institutional abbreviations. FC-DPV, Colección de Vertebrados Fósiles, Facultad de 145 Ciencias, Universidad de la República, Uruguay; FSL, Faculté des Sciences de Lyon, Lyon, 146 France; MACN, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina; MSNM, Museo Civico di Storia Naturale di Milano, Milan, Italy; 147 148 NHMUK, The Natural History Museum, Palaeontology Vertebrates, London, UK; PVL, 149 Fundación 'Miguel Lillo,' San Miguel de Tucumán, Argentina. 150 Other abbreviations. AL, apical length; CBL, crown base length; CBR, crown base ratio;

CBW, crown base width; CH, crown height; CHR, crown height ratio; DA, distoapical

denticle density; **DB**, distobasal denticle density; **DC**, distocentral denticle density; **DCR**, denticle crown ratio; **DDL**, distal denticle length; **de/5 mm**, number of denticles per five millimeters; **DSDI**, denticle size density index; **LAF**, number of labial flutes; **LIF**, number of lingual flutes; **MA**, mesioapical denticle density; **MB**, mesio-basal denticle density; **MC**, mesiocentral denticle density; **MCL**, mid-crown length; **MCR**, mid-crown ratio; **MCW**, mid-crown width; **MDE**, mesiobasal denticle extent; **MDL**, mesial denticle length.

MATERIAL AND METHODS

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

Comparative methodology and terminology

The dental material from the Mesozoic of Gondwana (Figs. 1-2), represented by 20 isolated shed tooth crowns (one from India, two from Uruguay, eight from Madagascar, and nine from Argentina), was examined first-hand and photographed with a digital camera by one of the coauthors (CH for the Argentine and Indian specimens; MSN for the Uruguayan dental material, and SM for the Malagasy teeth). Information on the paleogeographic and stratigraphic distribution is provided for each specimen in the Systematic Paleontology section (See also supplementary information). The denticles and enamel surface texture of the teeth from the NHMUK, MACN and PVL collections were additionally examined with the help of a portable DinoLite microscope. The isolated theropod teeth were described and annotated using the *modus operandi*, terminology, and annotations proposed by Hendrickx et al. (2015b). The latter is mainly based on the terminology provided by Smith and Dodson (2003) for the positional nomenclature, and Smith et al. (2005) for the anatomical and morphometric nomenclatures. Morphometric measurements on the crowns provided in Table 1 were taken using the methodology summarized by Hendrickx et al. (2015b) and further detailed by Hendrickx et al. (2020b, appendix A4). A new variable quantifying the size of the denticles in relation to the height of crown, here called the "denticle crown ratio" (DCR), was introduced in this study. DCR corresponds to the quotient of the largest distal denticle height (DDL;

typically at mid-crown) by the crown height (CH) multiplied by a hundred (DCR=DDL/CH*100; DCR=[5/DC]/CH*100). Teeth with minute denticles such as those of baryonychines have a DCR lower than 0.5 whereas teeth with particularly large denticles such as those of Troodon and Saurornithoides have a DCR higher than 10. The teeth were compared with those from a large sample of non-avian theropods, which includes 11 abelisaurid taxa deposited in the collection of nine institutions from France, Argentina, and the USA (see supplementary data). We finally followed the phylogenetic definitions given by Hendrickx et al. (2024) for each ceratosaur clade and either corrected or provided an updated version of the definitions for Berthasauridae, Elaphrosaurinae, and Noasaurinae in Table 2. **Cladistic analysis** The identification of the dental material was assisted with the help of a cladistic analysis performed on a revised version of Hendrickx et al.'s (2024) data matrix focused on the dentition of non-avian theropods. The dataset includes 148 non-ordered and similarly weighted discrete dental characters scored in 127 saurischians (i.e., 125 non-avian theropods and five early branching saurischians), to which we added six new dental characters and the abelisaurids Rahiolisaurus gujaratensis (Novas et al., 2010) and Llukalkan aliocranianus (Gianechini et al., 2021) (see supplementary information). Unlike previous authors who used cladistic analysis as a way to identify isolated theropod teeth (e.g., Hendrickx et al., 2023;

196 Malafaia et al., 2025), only operational taxonomic units (OTUs) for which more than 50% of

crown-based characters (i.e., characters on the mesial and lateral dentition) could be scored

Candeiro et al., 2024; Isasmendi et al., 2024; Meso et al., 2024; Chowchuvech et al., 2025;

were kept in the analysis. Likewise, we excluded all edentulous taxa as well as the dental

characters related to the premaxillary, maxillary, and dentary dentition. We additionally

divided the dataset into mesial and lateral dentitions so that only mesial and lateral-based

characters were kept in the datamatrices. The isolated teeth from Madagascar and the Salta

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

197

198

199

200

Province were scored by morphotypes whereas those from Uruguay, Patagonia, and India were scored as separate specimens. Specimens and morphotypes were preliminary identified as belonging to the mesial or the lateral dentition and scored in the mesial or lateral-crown based datamatrices accordingly. As done by Hendrickx et al. (2020a, 2023), the cladistic analysis was performed on TNT 1.5 (Goloboff and Catalano, 2016) using a constrained topological tree of non-avian theropod relationships and the dental material (i.e., morphotypes or separated specimens) as floating taxa. However, unlike previous authors, we additionally performed the cladistic analyses using two constrained trees representing alternative hypotheses of theropod relationships. The first topology hypothesizes herrerasaurids as early branching saurischians, elaphrosaurines as early branching coelurosaurs, allosauroids among avetheropods, megaraptors within tyrannosauroids, and scansoriopterygids among oviraptorosaurs. It is based on the results of Moro et al. (2024) for non-theropod saurischians, Ezcurra et al. (2023) for non-averostran theropods, Hendrickx et al. (2024; first analysis) for Ceratosauria, Kellermann et al.'s (2025; split dataset) for non-maniraptoriform tetanurans, Zheng et al. (2024) for derived Tyrannosauroidea, Cuesta et al. (2022) for Ornithomimosauria, Kubo et al. (2023) for Alvarezsauria, Kobayashi et al. (2025) for Therizinosauria, Hao et al. (2025) for non-scansoriopterygid oviraptorosaurs, Brum et al. (2021) for non-eudromaeosaur Dromaeosauridae, Czepiński (2023) for Eudromaeosauria, and Kubota et al. (2024) for Troodontidae. Conversely, the second tree topology postulates a phylogenetic position of elaphrosaurines within noasaurids, megalosauroids among carnosaurians, megaraptorans within allosauroids, compsognathids as earliest branching coelurosaurs, therizinosaurs and alvarezsaurs as sister taxa, and *Ornitholestes* as the earliest branching oviraptorosaur. This topology is mainly based on the results of the cladistic analyses performed by Pol et al. (2024) for Ceratosauria, Pradelli et al. (2025) for Carnosauria, Zheng et al. (2024) for non-tyrannosaurid Tyrannosauroidea, Dalman et al.

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

(2024) for Tyrannosauridae, and Chapelle *et al.* (2021) for *Ornitholestes* (the rest of the neocoelurosaur classification being the same as in the first topology). In both topologies, the data matrix was phylogenetically bracketed between the early branching dinosaur *Daemonosaurus chauliodus* (Sues *et al.*, 2011) as recovered by Cau (2024), and the avialan theropod *Archaeopteryx lithographica* (Meyer, 1861), whose dentitions are well-known (e.g., Howgate, 1984; Rauhut *et al.*, 2018; Nesbitt and Sues, 2020). 3,000 trees were used as the maximum number of trees to be stored. We also used a combination of the tree-search algorithms Wagner trees, TBR branch swapping, sectorial searches, Ratchet (perturbation phase stopped after 20 substitutions), and Tree Fusing (5 rounds), until 100 hits of the same minimum tree length were achieved, and finally subjected the best trees to a final round of TBR branch swapping. The resulting command in TNT was "xmult = hits 100 rss fuse 5 ratchet 20" followed by "bb". The slack for sectors was increased to 50 using the command "sect:slack 50" in case the message "out of memory re-packing data for sectorial searches" appeared during the analysis. The Excel and Mesquite files with the datamatrices and the TNT files used in the cladistic analysis are available in the supplementary information.

Machine learning analysis

A machine learning analysis performed on a dataset of crown-based measurement variables compiled by Hendrickx *et al.* (2023) for non-avian theropods further helped identify the most complete shed tooth crowns, i.e., those for which sufficient measurements could be taken on the crown. We compiled a composite dataset that merged the morphometric matrices of Hendrickx *et al.* (2023) yielding 1334 theropod tooth specimens, which correspond to previously published, taxonomically resolved teeth and were treated as the training block, while the remaining rows served as an independent prediction block for which two response variables were considered: "Clade" and "Clade + Tooth-type", however, we focused our analyses for the "Clade" predictions. While we attempted to run "Taxon + Tooth type" as a

252 response variable too, there are not enough specimens per category to accurately predict and 253 train the models. All analyses were run in R 4.4.0 within RStudio 2024.04.1. 254 Every morphometric column whose entries were numeric strings, were log-transformed (log x 255 + 1) to reduce skew, and then centered and scaled with caret (Kuhn, 2008). Standardizing the 256 data by first centering each measurement to zero mean and then scaling it to unit variance, 257 ensures that no single high-variance morphometric variable can overwhelm the learning 258 algorithm, while simultaneously improving numerical stability and convergence speed in 259 gradient-boosted trees and neural networks. Crucially, we perform this transformation after 260 the missForest imputation, so the scaling parameters are drawn from the full, balanced dataset 261 rather than the reduced subset used by Barker et al. (2024), thereby preserving information 262 that would otherwise be discarded. Together, these choices yield models that learn from a 263 richer signal and generalize more reliably. Furthermore, we implemented missing values 264 (ignored or list-wise deleted by Barker et al., 2024) with missForest (Stekhoven and 265 Bühlmann, 2012), preserving more than 98% of the original observations and improving class 266 balance in minority groups. Feature selection was performed separately for each response 267 using the Boruta wrapper algorithm (Boruta; Kursa and Rudnicki, 2010). The Boruta wrapper 268 shields the pipeline from noise and subjective bias by exhaustively testing every variable 269 against "shadow features" and keeping only those that show a statistically significant, data-270 driven contribution to clade separation. This automatic winnowing both lifts predictive 271 accuracy and focuses the measurements that are relevant, insights that a fixed, hand-picked 272 variable list could easily miss. The Boruta wrapper was performed for one hundred iterations 273 with the random-forest Z-score importance metric retained, on average, 15 variables (mean ± 274 $SD = 14.6 \pm 3.2$) per fold (n.b., the Boruta wrapper considered 21 variables: Taxa (Genus), 275 Source, Taxon + Tooth type, Clade, Clade + Tooth type, CBL, CBW, CH, AL, CBR, CHR, 276 MCL, MCW, MCR, MSL, LAF+1, LIF+1, MDL, DDL, MDL*, and DDL* and only retained

the following eight to nine morphometric variables: CBL, CBW, CH, AL, CBR, CHR, MCL, MCW, MDL, and sometimes DDL). Folds are the non-overlapping slices of the training data used in cross-validation; for each fold, one slice is held back for validation while the remainder drive the learning pipeline, so Boruta reruns on a different specimen set every time, keeps only the variables that matter, and logs how many survive. Averaging these counts across folds (\sim 15 ± 3 variables) reveals the stability of feature choice and prevents over fitting to a single partition; this is an adaptive safeguard absent from Barker et al. (2024), who relied on one fixed six-variable list throughout. Model training followed a fully nested resampling design: an outer stratified k-fold cross-validation (k = 2-5, depending on sample size) provided an unbiased generalization estimate (Varma and Simon, 2006), while an inner 2-5fold grid search tuned five candidate algorithms: random forest (Liaw and Wiener, 2002), C5.0 decision tree (Quinlan, 1993), mixture discriminant analysis (Hastie et al., 1994), gradient-boosted trees (i.e., XGBoost; Chen and Guestrin, 2016), and a weight-decayed single-layer neural network (Bergmeir and Benítez, 2012). The algorithm with the highest mean outer-fold macro-accuracy was refit to the full training block under a ten-fold crossvalidation with class probabilities enabled. For each unseen specimen the final model produced posterior probabilities that were sorted to yield the three most likely classes, their probabilities, the name given to the selected algorithm, and single-algorithm predictions from all remaining models; these outputs were written to a *.csv file, while fitted models and foldwise performance metrics were archived separately. Probability-ranked predictions provide explicit uncertainty estimates lacking in Barker et al.'s pipeline and facilitate downstream ensemble. Relative to Barker et al. (2024) and previous studies using machine learning algorithms, the present workflow retains incomplete records via imputation, broadens the algorithmic search (adding XGBoost and MLP), replaces a single 80/20 split with nested cross-validation, and selects features data-driven rather than a fixed set of variables simply

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

because the researcher decrees it (without letting the data demonstrate their relevance), collectively delivering a gain in macro-accuracy during outer folds and a far richer characterization of predictive uncertainty. All the files used in the machine learning and the Excel files with the results of this analysis are available in the supplementary information.

Dental evolution analysis

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

The evolution of the dentition in abelisaurid ceratosaurs was examined using our updated version of Hendrickx et al.'s (2024) dataset that we restricted to ceratosaur taxa. This data matrix includes a total of 22 ceratosaurs and 13 abelisaurid taxa, and the non-ceratosaur averostran Dilophosaurus wetherilli (Welles, 1970; Marsh and Rowe, 2020) was used to root the tree. Dental evolution in Abelisauridae was explored by mapping apomorphic dental features on three topological trees representing alternative phylogenetic hypotheses of ceratosaur evolution. The first topology is based on the results of the cladistic analysis performed by Hendrickx et al. (2024) using an update version of Agnolín et al.'s (2022) dataset, which places Berberosaurus closer to abelisauroids than ceratosaurids and the toothless ceratosaurs Limusaurus and Berthasaura at the base of the ceratosaur and abelisauroid clades, respectively. The placement of the Moroccan abelisaurid *Chenanisaurus* in this topology follows that of Longrich et al. (2017). The second topology follows the classification obtained by Pol et al. (2024), which recovers Berberosaurus as the earliest branching ceratosaur and *Limusaurus* as a noasaurid abelisauroid. The last topology is based on the reduced strict consensus tree recovered by Cau and Paterna (2025), which classifies the edentulous Berthasaura and Limusaurus among berthasaurids (sensu Hendrickx et al., 2024), Berberosaurus as an early branching abelisauroid, and Ceratosaurus as a particularly basal ceratosaur. Character distributions for dental features were visualized on each tree using TNT 1.5 (Goloboff and Catalano, 2016) and WinClada 1.00.08 (Nixon, 2002) based on the Nexus

file created with Mesquite 3.2. All the Mesquite files used in the dental evolution analysis and the pdf files with the results of this analysis are available in the supplementary information. Morphological disparity and phylogenetic generalized least square analyses To explore morphological disparity throughout the evolutionary history of abelisaurids, we conducted separate analyses based on two discrete character-dental matrices: one comprising data from lateral teeth, and the other from mesial teeth. Both matrices were processed using the R package Claddis v.0.6.3 (Lloyd, 2016), which allowed us to compute distance matrices employing the maximum observable rescaled distance (MORD). This method is particularly suitable for datasets with a moderate to high proportion of missing data, thereby minimizing the biases associated with generalized Euclidean distance (GED) methods (Ezcurra and Butler, 2018; Flannery Sutherland et al., 2019; Lehmann et al., 2019). Principal coordinates analyses (PCo) were then performed on each matrix, incorporating the Lingoes correction to address negative eigenvalues. For the lateral tooth matrix, the first 14 PCo axes were retained, accounting for 100% of the total variance, whereas in the case of the mesial tooth matrix, the first 9 axes were selected, explaining 100% of the total variance. These axes were used to reconstruct and visualize the morphospace occupied by the sampled taxa. Morphological disparity was subsequently quantified using the weighted mean pairwise dissimilarity (WMPD) metric, calculated before ordination. Disparity values were compared within two temporal bins: the "Early Cretaceous" and the "Late Cretaceous". While an initial three-bin temporal structure was considered, this was ultimately simplified to avoid potential biases resulting from underpopulated intervals, which could compromise statistical robustness. To examine the potential effect of body length on variation in dental morphology, we carried out two phylogenetic generalized least squares (pGLS) regressions. These analyses were based on a reduced consensus phylogeny derived from the topology proposed by Hendrickx et al. (2024). To obtain a fully bifurcating tree suitable for comparative analysis, polytomies

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

were randomly resolved using the multi2di() function in R. The resulting topology was then time-calibrated using the minimum branch length ("mbl") approach (Laurin, 2004; Brusatte et al., 2008), implemented via the timePaleoPhy() function from the paleotree package. First, we performed phylogenetic generalized least squares (pGLS) regressions between the log-transformed estimates of body length (see Pereyra et al., 2025) and the first principal coordinate axis (PCo1) for each of the two matrices independently. For the lateral tooth dataset, PCo1 accounted for 52.72% of the total morphological variance, whereas for the mesial tooth dataset, PCo1 explained 57.10%. These axes, capturing the primary axis of variation in each dataset, were regressed individually against log-transformed body length to evaluate potential correlations between overall size and morphospace occupation. All pGLS regressions were carried out using the gls() function from the nlme package v.3.1 in R (Pinheiro-Silva et al., 2020), with phylogenetic correlation structures modelled under a Brownian motion framework. Statistical significance was assessed at the conventional threshold of P < 0.05. The phylogenetic signal in morphospace was visualized using the phylomorphospace() function from the phytools package (Revell, 2012). All the files used in this analysis are available in the supplementary data.

RESULTS

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Cladistic analysis

The cladistic analysis performed on the dentition-based data matrix restricted to mesial-related dental characters using the first constrained tree topology yielded eight most parsimonious trees (MPTs) whose strict consensus tree recovered all floating dental OTUs (Mada I and II, Salta I and II) among abelisaurid ceratosaurs (Fig. 3.1). The two dental morphotypes from the Salta Province were classified in the same clade whereas the Malagasy Morphotype I and II were classified as the sister taxon of *Chenanisaurus* and Abelisaurinae, respectively (Fig. 3.1). Performing the same analysis using the second tree topology yielded

24 MPTs whose strict consensus tree classified Mada II in Abelisauridae and the rest of the floating dental morphotypes in a polytomy at the base of Abelisauridae (Fig. 3.2). Conducting the cladistic analysis on the data matrix of lateral-based dental characters using the first tree topology resulted in 2519 MPTs where all Gondwanan specimens were recovered in a large polytomy at the base of Averostra in the strict consensus tree and within Abelisauroidea in the 95% majority rule consensus tree (Fig. 3.3). Excluding specimens PVL 3672 and MACN 18.172 from the analysis, however, classified the rest of the dental material in a large polytomy within Abelisauridae (Fig. 3.4). Using the second tree topology as a backbone tree gave relatively similar results where the strict consensus tree of 1712 MPTs classified the dental material in a fully unresolved Abelisauroidea and Abelisauridae when PVL 3672 and MACN 18.172 are excluded from the analysis.

Machine learning analysis

The accuracy of classifying the most complete theropod teeth here studied using purely morphometric methods is largely independent of both the composition of the training dataset and the specific machine-learning algorithm chosen. Instead, classification success depends primarily on how closely each tooth matches the stereotypical Abelisauridae tooth morphology. To assess this, we used three progressively "cleaner" training sets that trace out a stepwise improvement in how confidently the teeth are recognized as Abelisauridae, i.e., (i) the full published dataset, (ii) that same dataset pared down to large-bodied theropods, and (iii) the author's own (personal) dataset with an optional large-only filter. For the full published dataset (small + large teeth) with the entire reference sample in play, shape variation linked to body size overwhelms the abelisaurid signal (Fig. 4). Only MSNM V 5779, NHMUK R 4190, and PVL 4062-1 emerge with ≥ 0.60 probability of being abelisaurid, and the overall mean probability is only about 0.40. The remaining ten teeth disperse their

401 likelihoods among tyrannosauroids, neovenatorids or dromaeosaurids, showing how "small-402 taxon noise" can mask true affinity. Removing small-bodied taxa helps but does not produce a 403 blanket fix. Exactly six specimens (MSNM V 5778, MSNM V 5779, MSNM V 5809, 404 NHMUK R 4190, PVL 4062-1, and PVL 4062-2) now take Abelisauridae as their single 405 highest-probability clade, usually in the 0.50–0.70 range (Fig. 4). Seven other teeth remain 406 equivocal: MSNM V 5781, MSNM V 5814, MSNM V 5818, MSNM V 5789, MGT-1161, 407 and MACN 18172 still share the lead with one or more other clades, while PVL 4173 sits far 408 back at 0.136 for Abelisauridae. The grand mean lifts to a little above 0.50, showing that size-409 filtering removes much of the noise but cannot rescue every specimen on morphometrics 410 alone. Switching to the author's personal measurements yields the most significant gain of 411 predicted probability. With no size filter, four teeth (MSNM V 5779, NHMUK R 4190, PVL 412 4062-1, PVL 4062-2) clear the 0.75 mark for Abelisauridae, while MSNM V 5778 (≈ 0.43) 413 and PVL 4173 (≈ 0.2) do not exceed the 0.50 mark (Fig. 4). Similar results are obtained when 414 restricting the dataset to large-bodied specimens, with 8 out of 13 specimens correctly identified with Abelisauridae appearing among the top three predicted clades. Irrespective of 415 416 the dataset the models usually recover Abelisauridae as among the top hits (7 out of 13 teeth); 417 refining the dataset mainly boosts the associated probability. The trade-off is that the same 418 refinement can also amplify the probability assigned to the wrong answer, which means our 419 apparent confidence in those rare misidentifications (i.e., the Type II error rate) rises as well. 420 In further studies, it is crucial to include other sources of information that complement 421 morphometric data. In what concerns, Random-Forest, C5.0, mixture discriminant analysis 422 and XGBoost turn out to be largely interchangeable; for any given training subset they return 423 nearly identical average probabilities. The decisive factor is not architecture nor whether the 424 comparative sample is size-matched and ideally measured in a consistent fashion, instead, 425 how closely the tooth in question matches the typical clade gestalt. All lines of quantitative

evidence still converge on Abelisauridae as the best referral for these teeth (Fig. 4), but the correctness of that referral hinges to a certain degree on training-set curation (42% of correct identifications if the whole dataset is used versus 46% of correct identifications if the personal dataset with large teeth is used). Leaving small theropods in the mix little influences the abelisaurid signature for most of the sample; restricting the reference set to large taxa lifts five specimens into a clear abelisaurid slot (i.e., >0.5). PVL 4173 and even to a greater extent MSNM V5818, MSNM V5789, MGT-1161, and MACN 18172 (Fig. 4), remain morphometrically ambiguous even under the best scenario, underscoring why qualitative dental characters and a tightly controlled comparative framework are essential companions to morphometric classification when identifying isolated theropod teeth.

Dental evolution analysis

Mapping dental characters on three topological trees representing alternative hypothesis of the ceratosaur classification reveals that the clade Abelisauridae is diagnosed by a minimum of two non-homoplastic dental characters (Fig. 5): the presence of mesialmost dentary teeth significantly smaller than mid- and distal dentary teeth (char. 30:2); and the tallest crowns in the middle portion of the maxilla (char. 42:1). Four and five apomorphic dental features constrain the abelisaurid clade when it forms the sister clade of Noasauridae (which excludes Elaphrosaurinae) among Abelisauroidea (Hendrickx's topology; Fig. 5.1) and the sister taxon of *Masiakasaurus* (Cau's topology; Fig. 5.3), respectively. Abelisauridae is, however, diagnosed by two to three dental synapomorphies when sister to a noasaurid clade gathering the edentulous *Berthasaura* and/or Elaphrosaurinae (Pol's topology; Fig. 5.2). In this configuration, Abelisauroidea is constrained by a particularly large number of dental apomorphies (11 to 12; Fig. 5.2) whereas zero to one dentition-based character diagnose Abelisauroidea when the toothless taxa are classified outside Noasauridae (Fig. 5.1, 5.3).

Within Abelisauridae, few clades are constrained by unambiguous dental characters whose position changes with the tree topology. Nonetheless, in Cau and Hendrickx's topological trees, abelisaurids more derived than *Spectrovenator* are diagnosed by apically inclined distal denticles in lateral teeth (char. 107:1) whereas those more derived than *Rugops* are diagnosed by the presence of mesialmost and mid-maxillary teeth subequal is size (char. 21:0; Fig. 5.1, C). Likewise, a single apomorphic dental character (either char. 105 or 116) diagnoses the most inclusive clade gathering *Abelisaurus* in all trees. *Chenanisaurus* is the abelisaurid taxon with the highest number of dental apomorphies (10; n.b., this taxon is only included in the first topology), followed by *Spectrovenator* (four to eight autapomorphies) and/or *Arcovenator* (six) (Fig. 5).

Morphological variation and phylogenetic generalized least squares regressions Results of the WMPD indicate that the mesial dentition of ceratosaurs already exhibited a high degree of morphological differentiation during the Early Cretaceous, with a mean of 0.47 and a confidence interval of 0.36–0.55 (Fig. 6.1). However, a decline is evident in the Late Cretaceous, where the mean drops to 0.39 and the interval narrows to 0.31–0.48, suggesting a reduction in morphological variability in ceratosaurs and a trend towards greater homogeneity in mesial tooth morphology (Fig. 6.1). As for the lateral dentition, WMPD values reveal greater disparity in the Early Cretaceous, with a mean value of 0.4 and a moderately wide confidence interval (0.26–0.66; Fig. 6.2). This suggests that these small to medium-sized predators had already developed from the early stages of their evolutionary history lateral dental traits that enabled them to exploit a broader range of ecological niches. Such disparity likely reflects an adaptive radiation occurring during this interval. In contrast, the lower mean value observed in the Late Cretaceous (0.28) and the narrower confidence interval (0.25–0.30; Fig. 6.2) indicate a more homogeneous lateral dental morphology, possibly indicating

morphological specialization or more uniform selective pressures acting upon this group during that time. Morphological disparity analyses based on mesial dentition were visualized using PCo1 (57.10% of the explained variance) against PCo2 (32.61%), as well as PCo1 versus PCo3 (9.23%). In the PCo1 vs. PCo2 plot, the overall distribution pattern broadly resembles that of the lateral dentition, albeit with some noteworthy differences. For instance, brachyrostrans and majungasaurines cluster closely together, with the notable exception of Skorpiovenator, which is separated from this group, suggesting a distinctive mesial dental morphology for this taxon (Fig. 7.1). Morphological disparity analyses based on lateral dentition were visualized using PCo1 (accounting for 52.72% of the explained variance) against PCo2 (26.99%), as well as PCo1 versus PCo3 (19.92%). In the PCo1 vs. PCo2 plot, which retains the highest proportion of variance, Early Cretaceous forms are restricted to the third and fourth quadrants, exhibiting a limited distribution within the morphospace. In contrast, Late Cretaceous ceratosaur taxa occupy all four quadrants, reflecting a substantially greater degree of morphological disparity (Fig. 7.2). Noasaurid taxa cluster in the lower regions of the third and fourth quadrants, markedly distant from the rest of Abelisauroidea. Among non-brachyrostran abelisaurids, Spectrovenator, Rugops, and Kryptops are closely positioned within the fourth quadrant. Conversely, brachyrostrans and majungasaurines show partial overlap but remain relatively distinct, with *Chenanisaurus* and *Arcovenator* standing out by plotting far from Gondwanan abelisaurids, near the upper boundary of the morphospace in the second quadrant in the former and the bottom left quadrant in the latter (Fig. 7.2). Phylogenetically informed linear regressions (pGLS) revealed no significant relationship between body length and the main axis of dental morphological variation (PCo1) for either mesial (Fig. 8.1) or lateral dentition (Fig. 8.2). For mesial teeth, the model yielded a non-significant negative correlation (PCo1 coefficient = -0.1713; p = 0.7435; AIC = 12.02; Fig. 8.1), while the model for lateral teeth similarly showed no significant association (PCo1

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

501	coefficient = -0.2044 ; p = 0.5977 ; AIC = 6.37 ; Fig. 8.2). These results indicate that
502	morphological variation in abelisaurid dentition is not primarily determined by body size.
503	SYSTEMATIC PALEONTOLOGY
504	DINOSAURIA Owen, 1842
505	THEROPODA Marsh, 1881
506	AVEROSTRA Paul, 2002
507	cf. ABELISAURIDAE Bonaparte and Novas, 1985
508	Gen. and sp. indet.
509	Material. MSNM V5814, V5818; MGT-1161; MACN 18.172.
510	CERATOSAURIA Marsh, 1884
511	ABELISAUROIDEA Bonaparte, 1991
512	ABELISAURIDAE Bonaparte and Novas, 1985
513	Gen. and sp. indet.
514	Material. MSNM V5778, V5779, V5781, V5789, V5799, V5809; FC-DPV 3531; PVL 3672,
515	4062-1 to 4062-4, 4173, 4174, 4175; NHMUK R4190.
516	Middle Jurassic of Madagascar
517	Material. MSNM V5778, V5779, V5781, V5789, V5799, V5809, V5814, V5818, eight
518	isolated shed teeth (Fig. 9; Table 1).
519	Locality and Horizon. Near Ambondromamy, Borizini (= Port-Bergé), and Tsinjorano (see
520	Maganuco et al., 2005 for more precise location of the specimens), Mahajanga Province,
521	northeastern Madagascar; Sakaraha Formation (=Isalo IIIb "faciès mixte – dinosauriens"),
522	Bathonian, Middle Jurassic (Maganuco et al., 2005) (Fig. 1.1-1.2).
523	Importance. Some of the isolated theropod teeth classified into Morphotype 1 to 4 by
524	Maganuco et al. (2005) represent the oldest abelisaurid record from Africa. They might
525	additionally be the oldest abelisaurid remains worldwide if the putative abelisaurid

Eoabelisaurus mefi from the Middle-Late Toarcian (Lower Jurassic) Cañadón Asfalto Formation of Southern Patagonia (Pol and Rauhut, 2012) is a non-abelisaurid ceratosaur, as recovered in the cladistic analyses of various authors using several independent datamatrices (e.g., Dal Sasso et al., 2018; Delcourt, 2018; Salem et al., 2022; Hendrickx et al., 2024). Maganuco et al. (2005) assigned all theropod specimens from Madagascar as "Theropoda gen. and sp. indet." and tentatively referred the isolated theropod teeth from Morphotypes 1 to 4 (29 teeth) to Abelisauridae, a classification supported by Soto et al. (2023). **Description.** Photos of the dental material belonging to morphotypes 1 to 4 reveal that many shed teeth have particularly distinct morphologies, suggesting that they may belong to distantly related ziphodont theropod clades. This is especially the case of the three mesial teeth grouped into Morphotype 1, whose morphologies suggest that they belong to distinct groups. Most of these isolated teeth (e.g., MSNM V5780, V5782, V5783, V5784, V5790, V5794, V5806, V5817, V5821, V5957, V5962) are also too incomplete to evaluate their taxonomic affinities with confidence. Eight of them are, however, particularly complete, wellpreserved, and exhibit abelisaurid traits so that their phylogenetic affinity was assessed in this study. These shed tooth crowns are grouped into five morphotypes related to their position along the jaw and their ontogenetic stage (Table 1). All, however, share a ziphodont morphology with denticulated mesial and distal carinae, centrally positioned distal carina reaching the cervix, mesial and distal denticles decreasing in size basally, and an irregular enamel surface texture.

The first morphotype (Mada Morpho I), represented by MSNM V5778 (Fig. 9.1-9.8), includes a shed tooth identified by Maganuco *et al.* (2005) as a mesial crown and grouped into their Morphotype 1. This shed tooth crown is characterized by having convex mesial and distal profiles, a weak constriction at the base crown, and mesial and distal carinae centrally positioned on their respective margins and extending to the cervix. It also exhibits two

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

concave surfaces adjacent to the carinae on the lingual side, resulting in a salinon-cross sectional outline of the base crown in basal view where the labial profile is significantly more convex than the lingual one (Fig. 9.7). The crown is poorly compressed (CBR of 0.7), particularly elongated (CHR of 2.4), and has a low denticle crown ratio (DCR=1.53; Table 1). Both mesial and distal carinae share 13 denticles per 5 mm (here abbreviated de/5 mm) at mid-crown (DSDI=1) and a higher density (17 de/5 mm) in the apical part of the crown. The size of the denticles also decreases basally so that the basalmost denticles are particularly small. Both mesial and distal denticles are subquadrangular and have symmetrically convex external margins and well-developed interdenticular sulci curving basally on the lingual side of the crown (Fig. 9.5-9.6).

MSNM V5809, which represents the second morphotype (Mada Morpho II; Appendix 1, Fig. A1.1-1.3), was identified by Maganuco *et al.* (2005, p. 182) as "undoubtedly occupying a lateral position in the jaw" and classified among Morphotype 3. The tooth shares with the previous morphotype a salinon-cross section at the crown base resulting from the two concavities present next to the carinae on the lingual side of the crown (the cross section should, however, be described as parlinon for its stronger labiolingual compression; Hendrickx *et al.*, 2015b). It is also relatively poorly compressed (CBR of 0.57), has both mesial and distal carinae extending to the cervix, and similar mesial and distal denticle density (13 de/5 mm) at mid-crown. However, it differs from Morphotype I in having a straight distal profile, distal denticles that project apically from the distal profile, a much higher DCR (2.22), and shorter interdenticular sulci restricted to the distal denticles. MSNM V5779 representing the third morphotype (Mada Morpho III; Fig. 9.9-9.15) was also classified within Morphotype 3 by Maganuco *et al.* (2005). This tooth shares a very similar morphology than MSNM V5809: it is weakly elongated (CHR of 1.88; Table 1), has both mesial and distal carinae extending to the cervix, similar mesial and distal denticle density (Table 1), lingual

concavities adjacent to the carinae, and a salinon-cross sectional outline at the base crown (Fig. 9.15). It is nonetheless distinct from Morphotype II in having a much stronger labiolingual compression (CBR of 0.41) and larger mesial and distal denticles (MC and DC with 10 de/mm). Morphotypes I, II and III all have relatively tall crowns (CH>2 cm).

The fourth morphotype (Mada Morpho IV), which includes MSNM V5781, V5789 and V5799 (Fig. 9.16-9.22), classified among morphotypes 2 and 4 by Maganuco *et al.* (2005), is similar to Morphotype III in being significantly compressed (CBR between 0.41 to 0.51) and having a high DCR (from 2 to 2.74), as well as mesial and distal carinae extending to the root. The distal denticles are also apically inclined, hooked apically, and exhibit short interdenticular sulci (Fig. 9.20). Morphotype IV, however, differs from the third one in its shorter crown height (CH>1.2 cm), slightly to significantly smaller mesial and distal denticles (14 to 25 de/5 mm), and, more importantly, a strong discrepancy between mesial and distal denticles, with the distal ones being larger than the mesial denticles (DSDI>1.2; Fig. 9.20-9.21). The crown cross-section outline is also more lanceolate to lenticular in outline, with symmetrically convex lingual and labial profiles in basal views, and a few poorly defined transverse undulations are visible basally on the crown. If mesial and distal carinae are centrally positioned on the crown in most of these teeth, we note that MSNM V5781 has a strongly labially deflected distal carina.

MSNM V5814 and V5818, classified in Morphotype 2 by Maganuco *et al.* (2005), represent the last morphotype (Mada Morpho V; Appendix 1, Fig. A1.4-1.10). Unlike all the previous teeth grouped into morphotypes I to IV, the mesial carina does not reach the cervix and extends a certain distance above the root (Appendix 1, Fig. A1.4, 1.8). The crowns, however, share all the dental features present in Morphotype IV such as a short crown height (CH<1.7 cm; Table 1), strong discrepancy between mesial and distal denticles (DSDI>1.2), relatively high denticle density (DC>16 de/5mm), apically hooked distal denticles, well-

developed interdenticular sulci, and a few poorly defined transverse undulations. MSNM V5814, however, shows a combination of irregular and braided enamel surface texture not seen in all previous teeth (Appendix 1, Fig. A1.6, 1.10).

Identification. The combination of dental features seen in morphotypes I to III strongly points towards an abelisaurid affinity whereas the latter is less straightforward for morphotypes IV and V. Results of the cladistic analysis, however, classifies all morphotypes as abelisaurid teeth (Fig. 3). Conversely, the machine learning analysis only identifies morphotypes I-III as abelisaurid teeth, the two other morphotypes (IV and V) being classified as Dromaeosauridae, non-megalosaurian Megalosauroidea, Neovenatoridae, and non-tyrannosaurid Tyrannosauroidea (Fig. 4).

We agree with Maganuco *et al.* (2005) that Morphotype I represents the mesialmost type (pm1 to 2) based on the salinon-shape outline of the crown with two lingual concavities adjacent to the carinae, low crown compression (CBR of 0.7; Table 1), a weak constriction at the cervix, convex mesial and distal profiles, well-developed interdenticular sulci, and a labial side of the crown significantly more convex than the lingual side in basal view (Smith, 2007; Hendrickx *et al.*, 2020a). Such a combination of dental features is, to our knowledge, restricted to mesialmost abelisaurid teeth such as those of *Majungasaurus*, also unearthed in the Mahajanga basin (Fanti and Therrien, 2007; Smith, 2007), as well as *Spectrovenator* (MZSP-PV 833). A salinon-shape is also present in mesialmost teeth of early branching allosauroids like *Allosaurus* and *Sinraptor*; however, none exhibits the constriction at the base crown present in some abelisaurids. In addition, the CBR of mesialmost teeth in early branching allosauroids is closer to or higher than 1 while DCR is lower than 2 (C.H. pers. obs.). Conversely, mesialmost abelisaurid teeth with deep lingual concavities have a CBR ranging from 0.7 to 0.9 (Hendrickx *et al.*, 2019, 2020b) and some taxa such as *Majungasaurus* have DCR higher than 2.

With a parlinon-shape cross-section with two lingual concavities adjacent to the carinae, a relatively high CBR (0.57), mesial and distal carinae extending to the root, apically hooked distal denticles, and an irregular enamel surface texture, Morphotype II most certainly represents transitional abelisaurid teeth.

Finally, with a CBR close to or lower than 0.5, a lenticular cross-section outline with or without shallow concavities adjacent to the carinae, symmetrically convex labial and lingual margins, mesial and distal carinae centrally positioned on their respective surface and extending to the root, apically hooked distal denticles with interdenticular sulci, and an irregular enamel surface texture, Morphotype III to IV most probably represent lateral abelisaurid teeth (Hendrickx and Mateus, 2014; Hendrickx et al., 2020a). With mesial and distal denticles of similar size at mid-crown and a crown height higher than 2 cm, teeth grouped into Morphotype III most likely pertain to adult abeliaurids. Conversely, a strong discrepancy between mesial and distal denticles (DSDI > 1.2) and shorter crown height (CH < 2 cm) suggest that teeth of Morphotype IV and V probably belong to juvenile abelisaurid individuals. Indeed, teeth belonging to juvenile abelisaurids such as Majungasaurus (Fanti and Therrien, 2007) and Spectrovenator (see Discussion) and other ziphodont theropods (e.g., tvrannosaurids; (Carr and Williamson, 2004; Hendrickx et al., 2019) have been shown to have a DSDI > 1.2 whereas those of adults have mesial and distal denticles of similar size (n.b., Ribeiro et al., 2024, however, described an isolated abelisaurid tooth possibly belonging to a juvenile with a reversed condition).

With a mesial carina restricted to some part of the crown, teeth belonging to Morphotype V are the most distinct from traditional abeliaaurid teeth. Nevertheless, they still exhibit a combination of dental features typical of abeliaaurids such as apically hooked distal denticles, mesial and distal carinae centrally positioned on their respective surface, a subsymmetrical convex surface of the labial and lingual surface, and an irregular (but also

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

braided) enamel surface texture. Results of the cladistic analysis suggests that they represent abelisaurid lateral teeth and they are, consequently, tentatively referred to Abelisauridae. A mesial carina not extending along the whole crown height is here interpreted as a possible plesiomorphic dental feature seen in more early branching abelisauroids and retained in early branching abelisaurids from the Middle Jurassic (n.b., it should be noted that the European abelisaurid *Arcovenator* also has a mesial carina not reaching the root; see discussion below; Hendrickx *et al.*, 2020a). Our identification of morphotypes IV and V as abelisaurid teeth should, however, be seen as tentative as we do not reject the possibility that they belong to other ziphodont theropod groups such as non-megalosaurian megalosauroid or a dromaeosaurid, as suggested by the machine learning analysis (Fig. 4).

661

662

671

651

652

653

654

655

656

657

658

659

660

Late Jurassic of Uruguay

- Material. FC-DPV 3531 and MGT-1161 (Fig. 10), a complete and partially complete lateralshed tooth crowns, respectively.
- 665 Locality and Horizon. Bidegain Quarry, Tacuarembó city, Tacuarembó Province,
- Northeastern Uruguay; Tacuarembó Formation, Kimmeridgian–Tithonian, Upper Jurassic
- 667 (Soto *et al.*, 2020a, 2020b) (Fig. 1.3-1.4).
- Importance. Although scarce, the abelisaurid dental material from Uruguay represent one of the oldest abelisaurid record from western Gondwana, along with the possible abelisaurid postcranial remains from the Oxfordian–Kimmeridgian Cañadón Calcáreo Formation of

Chubut Province, Argentina (Rauhut and Pol, 2021) and the Kimmeridgian-Tithonian

- 672 Tendaguru Formation of Tanzania (Rauhut, 2011). The abelisaurid teeth from Uruguay
- additionally expand the theropod diversity of the Tacuarembó Formation, already represented
- by megalosaurid and ceratosaurid theropods (Soto *et al.*, 2020a, 2020b).

Description. FC-DPV 3531, a lateral ziphodont crown missing the apex, was comprehensively described by Soto et al. (2023) so that the description will not be repeated here. The second specimen, MGT-1611, is an almost complete ziphodont lateral tooth only lacking the apex due to pre-mortem apical abrasion (Fig. 10). The crown is medium-sized (CH around 2 to 2.5 cm), moderately compressed (CBR and MCR of ~0.49), and most likely moderately elongated (CHR around 2 to 2.5) when complete. It exhibits a centrally positioned mesial carina, which, unlike FC-DPV 3531, does not reach the base of the crown and slightly twist towards the lingual side of the crown basally (Fig. 10.3), possibly due to its more mesial position within the lateral dentition. The distal carina is centrally positioned, straight (Fig. 10.4) and extends to the root. In basal view, the cross-section outline of the crown-base is lanceolate, with symmetrically convex lingual and labial margins (Fig. 10.5). The latter also shows a flat to almost concave surface at mid-crown width (Fig. 10.5). There are 20 distal de/5 mm at the base of the crown and 15 at mid-crown height. Distal denticles are mesiodistally rectangular, apically hooked (i.e., the narrow shaft distally expands into an apically pointing tip), and with moderate spacing between them (Fig. 10.7). Distobasal denticles do not have the narrowing of the shaft and appear to be more closely spaced than the distocentral denticles. This, coupled with the reduction of absolute size, explains the fact that the distobasal denticle density is higher than the distocentral one. Most mesial denticles are not discernible due to wear (Fig. 10.3) and only the bases of the basalmost denticles can be seen. There were approximately 20 to 25 de/5mm at the base of the mesial carina. Interdenticular sulci are present between distal denticles but differ from MGT-3531 in being short and less inclined towards the base of the crown (Fig. 10.2). Tooth enamel is irregular (i.e., non-oriented) and shows numerous, closely packed transverse undulations visible under oblique light (Fig. 10.8). No marginal undulations, flutes, basal striations, longitudinal ridges or grooves are, however, visible on the crown.

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

Identification. A cladistic analysis performed by Soto *et al.* (2023) retrieved FC-DPV 3531 nested among abelisaurid theropods, supporting this identification. A combination of features such as the apically hooked denticles, well-developed interdenticular sulci, irregular enamel surface texture, and lanceolate cross-sectional shape indeed warrants its referral to Abelisauridae (Hendrickx et al., 2020a). Specimen MGT-1161 similarly shows a combination of dental traits typical of abelisaurid lateral teeth such as an irregular enamel surface texture, hooked distal denticles with interdenticular sulci, poorly defined transverse undulation, a centrally positioned distal carina, and a lenticular cross-section outline with symmetrically convex labial and lingual (Hendrickx et al., 2020a). One dental feature uncommon in abelisaurid lateral teeth but observed in some of them (e.g., Arcovenator) is the presence of a mesial carina slightly twisting lingually and restricted to the apical half of the crown (Fig. 10). Results of the cladistic analysis recovered this specimen as an abelisaurid tooth (Fig. 3.3-3.4) whereas machine learning identifies it as a non-megalosaurian megalosauroid (e.g., piatnitzkysaurid) or a neovenatorid (which here includes megaraptors; Fig. 4). We note that MGT-1161 shares many dental features with Piatnitzkysaurus (PVL 4073) such as hooked distal denticles, interdenticular sulci between distal denticles, a mesial carina restricted to the apical portion of the crown, weakly developed transverse undulations, and an irregular enamel surface texture (C.H. pers. obs.). The main difference between MGT-1161 and Piatnitzkysaurus is the strong labial displacement of the distal carina in most lateral crowns of the latter; however, this is not the case in all of them (C.H. pers. obs.). One way to separate abelisaurid from piatnitzkysaurid lateral teeth would be to compare the size of mesial and distal denticles. DSDI is indeed typically close to one in Abelisauridae and close to or higher than 1.2 in Piatnitzkysauridae (Hendrickx et al., 2019, 2020a). Unfortunately, the mesial denticles are worn out in MGT-1161, preventing us from knowing if an important size difference between mesial and distal denticles occurred in this specimen. Importantly, the

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

lateral tooth FC-DPV 3531 described by Soto *et al.* (2023) has a mesial denticulated carina extending to the cervix and similar mesial and distal denticle density at mid-crown, comparing better to abelisaurid teeth than piatnitzkysaurid ones.

Because an abelisaurid tooth (FC-DPV 3531) was already reported in the Tacuarembó Formation by Soto *et al.* (2023), we follow the identification given by the cladistic analysis for MGT-1161 over that from the machine learning analysis, which is restricted to crown-based measurements. MGT-1161 is, however, tentatively referred to Abelisauridae as we do not reject the possibility that this specimen belongs to a non-abelisaurid such as a piatnitzkysaurid. This latter clade was also present during the Late Jurassic although its geographic distribution is currently restricted to North America (Madsen, 1976; Carrano *et al.*, 2012).

736

737

738

739

725

726

727

728

729

730

731

732

733

734

735

Late Cretaceous of Chubut, Argentina

- **Material.** MACN 18.172, a fairly complete but badly preserved lateral shed tooth crown (Fig. 11).
- 740 **Locality and Horizon.** 43°30'S, 68°20'W, Department Paso de Indios, Chubut Province,
- 741 Argentina; Bayo Overo Member, Cerro Barcino Formation, Chubut Group, Cenomanian,
- 742 Upper Cretaceous (del Corro, 1966; Carrano et al., 2012; Ezcurra and Novas, 2016) (Fig. 2.3).
- 743 **Importance.** One of the five theropod teeth reported by del Corro (1966) represents, to our
- knowledge, the earliest published record of an abelisaurid theropod from Argentina. It may
- also represents the second earliest published record of an Abelisauridae from the New World
- six years after the description of two isolated carnosaur teeth from the Cretaceous Alter do
- 747 Chão Formation of Amazonas Basin by Brazilian paleontologist Llewellyn Ivor Price (1960),
- one of which was referred to Abelisauridae by Ribeiro et al. (2024a). The isolated teeth
- reported by del Corro (1966) were found associated with the holotypic skeleton of the

somphospondylian sauropod Chubutisaurus insignis in February 1966 (del Corro, 1966, 1975) and referred by del Corro (1966) to the new Megalosaurus species 'Megalosaurus inexpectatus', an hypodigm considered by Ezcurra and Novas (2016) as a nomen vanum. Four of these teeth, among which two appear to be lost (Ezcurra and Novas, 2016), were in a good state and used by del Corro (1966) as the type material of the new *Megalosaurus* species. The isolated teeth were compared to those of carcharodontosaurids and abelisaurids by Carrano et al. (2012) and Ezcurra and Novas (2016), respectively, but never received a proper description nor identification. **Description.** One of the several ziphodont theropod teeth under the collection number MACN 18.172 shows typical abelisaurid traits (Fig. 11). The tooth is fairly complete but poorly preserved, with the denticles and most of the enamel surface missing. The preserved crown is ziphodont in shape, moderately tall (CH of 2.7 cm), relatively compressed (CBR of 0.47), and elongated (CHR of 2.23; Fig. 11.1). The mid-crown (CBR 0.45) is only slightly more compressed than the base crown. In lateral view, the mesial profile is weakly convex whereas the distal profile is straight so that the crown apex lies at the same level as the distal margin of the crown. The crown bears straight and centrally positioned mesial and distal carinae extending all along the crown height (Fig. 11.3-11.4). In basal view, the cross-sectional outline of the base crown is symmetrically lenticular with both labial and lingual profiles having the same convexity. A flat surface is, however, visible adjacent to the distal carina on the labial side of the crown (Fig. 11.5). If both carinae were denticulated all along their length, none of the denticles are completely preserved to provide information on the size, elongation, denticle density, and shape of the external margin (Fig. 11.7-11.8). The crown is also too badly preserved to rule out the presence of crown ornamentations such as marginal and transverse undulations. It at least does not bear flutes, longitudinal ridges or grooves,

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

basal striations, nor labial/lingual depressions. The enamel from the best-preserved part of the
 crown also exhibits an irregular surface texture (Fig. 11.9).

Identification. Although poorly preserved, MACN 18.172 bears all dental features present in abelisaurid lateral teeth such as a straight distal profile, mesial and distal carinae centrally positioned on their respective surface and extending to the root, and a lenticular profile with symmetrically convex lingual and labial profiles. The tooth differs from two of the teeth illustrated by del Corro (1966) in the absence of well-defined and apicobasally wide transverse undulations typically present in carcharodontosaurid teeth. Transverse undulations are also common in abelisaurid teeth (Hendrickx *et al.*, 2019, 2020a) but they do not form such thick and well-marked bands transversally crossing the whole crown like those visible in del Corro's (1966) figures 1 and 2 (C.H. pers. obs.). The specimen further differs from that figured by del Corro (1966: fig. 2) in the absence of an apical convexity forming the apical third of the distal margin of the crown, a dental feature seen in carcharodontosaurid teeth (Hendrickx *et al.*, 2019).

The cladistic analysis identifies this specimen as a tooth of an abelisauroid (Fig. 3.3). A noasaurid affinity can, however, be excluded based on the large size of the crown (CH>25 mm). Indeed, all noasaurids bear crowns of less than 2 cm (Carrano *et al.*, 2002; Hendrickx *et al.*, 2019, 2024). Although the denticles are badly preserved and almost missing entirely, the tooth also does not seem to have a strong size discrepancy between mesial and distal denticles, a dental feature typical of noasaurid teeth (Hendrickx *et al.*, 2019, 2024). Results of the machine learning analysis conversely classifies this tooth as belonging to a dromaeosaurid, and to a lesser extent, a megalosaurid, a tyrannosaurid, and a non-spinosaurid megalosauroid (Fig. 4). None of these clades other than Dromaeosauridae were present in Patagonia during the middle of the Cretaceous and we, therefore, confidently disregard a non-spinosaurid megalosauroid or a tyrannosaurid affinity for this tooth. In South America during

the mid-Cretaceous, Dromaeosauridae are only represented by the unenlagiine *Buitreraptor*, whose lateral teeth strongly differ from MACN 18.172 in being non-denticulated, strongly labiolingually compressed, apically pointed, and showing a labial depression and often longitudinal ridges on the labial surface (Gianechini *et al.*, 2011). Unenlagiines, which are the only dromaeosaurids present in South America, bear non-denticulated (ziphodont or conidont) teeth devoid of carinae so that we confidently reject the possibility that MACN 18.172 belongs to a dromaeosaurid. Even though we disregard a noasaurid, dromaeosaurid, megalosaurian, or tyrannosaurid affinity for this tooth, we remain cautious with the identification of this poorly preserved specimen, which is tentatively referred to Abelisauridae. However, based on the result of the cladistic analysis and the abundance of abelisaurid remains in Cenomanian deposits of Patagonia (e.g., *Ilokelesia*, *Xenotarsosaurus*, *Ekrixinatosaurus*, *Skorpiovenator*; Coria and Salgado, 1998; Calvo *et al.*, 2004; Canale *et al.*, 2009; Ibiricu *et al.*, 2021; Cerroni *et al.*, 2022b), this shed crown most likely represents an abelisaurid tooth.

Late Cretaceous of Salta, Argentina

Material. PVL 3672, 4062-1 to 4062-4, 4173, 4174, 4175, eight incomplete to almost complete mesial and lateral teeth (Figs. 12-14).

Locality and Horizon. All the specimens come from the Department of Candelaria, Southern Salta Province, northeastern Argentina (Fig. 2.4), and were unearthed in deposits from the upper part of the Salta Group of Campanian–Maastrichtian in age. More precise information on the locality and horizon of the specimens here follows: PVL 4173 to 4175: Finca Sanchez, near El Ceibal, Los Blanquitos Formation, Pirgua Subgroup, upper Campanian or lower Maastrichtian (Marquillas *et al.*, 2005); PVL 4062: 2.6 km south of the El Brete Estancia, Lecho Formation, Balbuena Subgroup, lower or mid-Maastrichtian (Hendrickx *et al.*, 2024)

(Fig. 2.4); PVL 3672: 5 km North of the Arroyo Morterito fossil site, Sierra La Candelaria, El Ceibal; Yacoraite Formation, Balbuena Subgroup; upper Maastrichtian (Powell, 1979). **Importance.** PVL 3672 (Fig. 14) represents the earliest published record of a non-avian theropod from northern Argentina (Bonaparte and Bossi, 1967) and one of the youngest abelisaurid records from South America (Ezcurra and Novas, 2016). It is also the second abelisaurid remain from Argentina to be reported in the literature after "Megalosaurus inexpectatus" described by del Corro (1966; see above). The isolated tooth was briefly described by Powell (1979) who referred it to an indeterminate carnosaur. The four carnosaur teeth from El Brete (PVL 4062; Fig. 13) are, with the noasaurid theropod Noasaurus, the second non-avian theropod record from northern Argentina (Bonaparte et al., 1977) and the isolated teeth represent the only evidence of a large bodied theropod from the famous site that yielded the saltasaurine titanosaur Saltasaurus and the first enantiornithine material ever described (Bonaparte and Powell, 1980; Walker, 1981; Powell, 1992, 2003; Hendrickx et al., 2024). These four teeth were only briefly described by Bonaparte and Powell (1980) and assigned to an indeterminate carnosaur, whereas specimens PVL 4173 to 4175 (Fig. 12) were never reported in the literature. **Description.** The eight shed tooth crowns exhibit variable state of preservation, ranging from fairly complete and missing only small portions of the crown (PVL 4072-1 and -2) to particularly incomplete (PVL 4174; Fig. 12.7-12.10). The largest crown (PVL 4173; Fig. 12.1-12.4) has many mesiodistally oriented fractures, especially in its basal part. This tooth lacks large portions of the distal part of the crown and some mesially (Fig. 12.1-12.2). PVL 4174 is the most incomplete, missing most of the distal profile of the crown (Fig. 12.7-12.10). If three morphotypes can be distinguished in the PVL sample (see below), the eight teeth all share a ziphodont morphology and a convex mesial profile. Likewise, if the distal profile is either straight or weakly convex, the crown apex always lies at the same level as the

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

distal limit of the crown. All teeth additionally have straight to weakly bowed but always centrally positioned mesial and distal carinae on the mesial and distal surfaces, respectively. The mesial denticles are subquadrangular and project perpendicular to the mesial profile whereas the distal denticles have asymmetrically convex to apically hooked external margins and project either perpendicular to or slightly apically from the distal profile. Although the number of denticles per 5 mm varies in different teeth, all have similarly sized mesial and distal denticles (i.e., DSDI~1) and a decrease in denticle size basally in both mesial and distal carinae. All teeth also share an irregular enamel surface texture, and those with the best-preserved denticles have medium to well-developed interdenticular sulci between the distal denticles. Finally, none bear flutes, lingual/labial depressions, longitudinal grooves/ridges, or basal striations.

Among the three morphotypes, the mesial one (Salta Morpho I), represented by PVL 4062-5, is weakly labiolingually compressed (CBR~0.65), moderately elongated (CHR~2) and has a particularly convex mesial profile and a slightly lingually displaced crown apex (Fig. 13.18-13.25). In basal view, it has a strongly asymmetrical parlinon-shape cross-sectional outline at the base crown where both carinae are lingually deflected and the labial profile is strongly convex, whereas the lingual side shows a weaker convexity and two concave surface adjacent to the mesial and distal carinae (Fig. 13.24). PVL 4062-5 additionally differs from the other teeth by having well-developed interdenticular sulci between mesial denticles (Fig. 13.23), pronounced marginal undulations adjacent to the distal carina on the lingual side, and a particularly low denticle density, with 8 and 8.5 de/5 mm on the mesial and distal carina at mid-crown, respectively.

The transitional type (Salta Morpho II) includes PVL 4062-4 and 4175 (Figs. 12.11-12.16, 13.13-13.17) and differs from the previous one in being slightly more labiolingually compressed (CBR from 0.55 to 0.63) and having a more symmetrical lenticular cross-section

at the base crown, with only weakly concave surfaces adjacent to the carinae on the lingual surface (at least in PVL 4175; Fig. 12.16). However, it shares with the previous morphotype a convex distal profile, a lingually displaced crown apex, a moderately elongated crown (CHR~1.5; n.b. this was estimated based on the crown profiles), particularly large mesial and distal denticles compared to the crown height, and marginal undulations adjacent to the distal carina (n.b., unlike the first morphotype, these undulations are faint and on the labial side of the crown), a combination of dental features absent in the lateral morphotype. The mesial and distal denticle densities in the crowns belonging to the second morphotype fluctuate between 12.5 to 15 de/5 mm at mid-crown.

The third morphotype (Salta Morpho III; PVL 3672, 4062-1, 4062-2, 4173, 4174; Figs. 12.1-12.10, 13.1-13.14, 14) includes moderately compressed crowns (CBR from 0.47 to 0.54) with a straight to weakly convex distal profile, a symmetrically lenticular cross-sectional outline with no concave surfaces adjacent to the carinae, and a crown apex exhibiting no lingual displacement. It should be noted that teeth from this morphotype strongly vary in height (CH between 18 to 46 mm), elongation (CHR of ~1.44 to 2.43), denticle crown index (~0.93 to 2.08), denticle densities (MC between 9 to 12.5; DC between 8.75 to 13.3), and the presence or absence of transverse and marginal undulations on the crown surface.

Identification. The dental material from the Campanian-Maastrichtian of Salta Province shows a combination of dental features restricted to Abelisauridae (Hendrickx *et al.*, 2020a). Indeed, like abelisaurid teeth, all shed tooth crowns bear mesial and distal denticulated carinae extending to the cervix, interdenticular sulci between distal and sometimes mesial denticles, and an irregular enamel surface texture. Like abelisaurid mesial teeth, the first morphotype has two strongly convex mesial and distal profiles of the crown, and the basal crown cross section outline is parlinon with two concave surfaces adjacent to the carinae on the lingual

side, and a strongly convex labial surface. Conversely, the lateral type shows centrally positioned mesial and distal carinae on their respective surface, a distal profile either straight or slightly convex, resulting in a crown apex lying at the same level as the distal margin if the crown, as well as a lenticular cross-section outline with symmetrically convex lingual and labial surfaces.

All Salta morphotypes are recovered among Abelisauridae by the cladistic analysis (Fig. 3) whereas two of the three most complete PVL crowns are classified as abelisaurid teeth by the machine learning analysis, the third (PVL 4173), being identified as a nonabelisauroid ceratosaur (Fig. 4). We agree with the machine learning analysis that the size, proportion, and general morphology displayed by PVL 4173 are reminiscent of those seen in Ceratosauridae; the latter clade is, however, restricted to the Late Jurassic and Early Cretaceous (Rauhut, 2004). The largest terrestrial predators from the Late Cretaceous of northern Argentina are currently limited to abelisaurids (Guemesia; Agnolín et al., 2022) and a large-bodied maniraptoran (*Unquillosaurus*) whose dentition and precise taxonomic affinities among Paraves are currently unknown (Powell, 1979; Novas and Agnolin, 2004; Novas, 2009). We, however, note that the dentition of the unique large-bodied paravian from the Late Cretaceous of South America, Austroraptor, bear ziphodont to conidont crowns with non-denticulated mesial and distal carinae, labial depressions, and numerous flutes (or longitudinal grooves; Motta and Novas, 2025). Consequently, based on the results of the phylogenetic and machine learning analyses combined with the paleogeographic and stratigraphic distributions of the isolated theropod teeth from the Late Cretaceous of Salta, PVL teeth are confidently referred to an indeterminate Abelisauridae, probably related to (and for PVL 4173 to 4175, possibly from) Guemesia ochoai from the Los Blanquitos Formation of central Salta (Agnolín et al., 2022).

923

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

Late Cretaceous of India

924

925 Material. NHMUK R4190, an isolated lateral tooth crown (Fig. 15). 926 Locality and Horizon. Takli, Nagpur area, Maharashtra State, western India; Lameta 927 Formation (also referred to the Takli Formation), upper Maastrichtian, Upper Cretaceous 928 (Carrano et al., 2012) (Fig. 2.2). 929 **Importance.** This specimen likely represents the earliest historical record of a non-avian 930 theropod in Asia (Carrano et al., 2010; Hendrickx et al., 2015a) and possibly the first 931 theropod remains to be reported from this continent (Hendrickx and Carrano, 2016). This 932 tooth is also among the youngest abelisaurid records from Asia. NHMUK R4190 is part of 933 several theropod teeth reported by Reverend Stephen Hislop (1861, 1864) and appears to be 934 the only surviving specimen from this collection. The specimen was found between 1858 and 935 1861 by Mr. Rawes in the locality of Takli (Nagpur area, Maharashtra State) and sent to the 936 Geological Society's Museum of London (which is now part of the Natural History Museum) 937 where it was studied and illustrated by English naturalist Richard Lydekker (Lydekker, 1879, 938 1885, 1890). The latter recognized the theropod affinity of the tooth and assigned it to 939 a new species of Massospondylus, M. rawesi (Lydekker, 1890), owing to its resemblance with 940 the teeth of this early branching sauropodomorph thought at the time to be a theropod. The 941 tooth was later referred to Megalosaurus by Vianey-Liaud et al. (1988) and to an 942 indeterminate theropod by Carrano et al. (2010, 2012) who, nevertheless, noted the strong 943 resemblance with abelisaurid teeth. Hendrickx et al. (2015a) finally considered NHMUK 944 R4190 as almost certainly representing the shed tooth crown of an abelisaurid. **Description.** 945 NHMUK R4190 is an almost complete lateral shed tooth crown missing the basalmost crown, 946 especially in its distal part where a piece of the basalmost portion of the distal surface was lost 947 (Fig. 15). Due to that, the cervical line as well as the distalmost denticles of the mesial and

distal carinae are not preserved. Despite being relatively complete, the crown is poorly

preserved as the enamel layer exhibits a punctuate appearance where spots of the enamel surface are worn out. The external surface of most of the mesial and distal denticles are also broken off, especially mesially at the crown apex. The specimen represents a typical ziphodont crown with denticulated mesial and distal carinae extending basally up to or very close to the root. Both mesial and distal carinae are straight or very weakly bowed and centrally placed on the mesial and distal profiles of the crown, respectively (Fig. 15.3-15.4). The crown, therefore, has a subsymmetrical appearance in basal view where the two carinae are aligned on a plane passing through the center of the crown and where the labial and lingual surfaces have the same convexity, with the apex mesially displaced and positioned at the level two-fifths of the crown (Fig. 15.5). The crown is medium in size (CH of 2.5 cm), moderately compressed (CBR of 0.48), and poorly elongated (CHR of 1.6). The mid-crown is only slightly more compressed than the crown base (MCR of 0.46). In lateral view, the mesial profile is symmetrically convex whereas the distal profile is straight so that the crown apex lies at the same level as the basalmost portion of the distal carina.

Denticles are present all along the carina length and appear to have crossed the apex. Based on the preserved denticles, the basalmost mesial denticles and apicalmost distal ones are smaller than those at mid-crown. We counted 8.5 and 10 mesial and distal de/5 millimeters at mid-crown, respectively, 13.75 at the base of the mesial carina and 11.87 in the apical portion of the distal carina. The mesial denticles are subquadrangular, project perpendicular from the mesial profile of the crown, and their external margin is either asymmetrically convex or apically hooked (Fig. 15.7). Conversely, the distal denticles are horizontally elongated, project diagonally from the distal profile, and the external surface is asymmetrically convex (Fig. 15.8). Well-developed interdenticular sulci curving basally are visible between distal denticles on the labial side of the crown (Fig. 15.1). Short sulci are also present between the best preserved mesial denticles. No marginal or transverse undulations

appear to be present on the crown, which is too badly preserved to rule out their presence. The specimen neither exhibits flutes or elongated grooves or ridges labial/lingual depressions. The best-preserved part of the crown surface clearly shows an irregular texture of the enamel (Fig. 15.9).

Identification. NHMUK R4190 exhibits all dental features present in abelisaurid lateral crowns: the crown is relatively large (CH~2.5 cm), moderately compressed (CBR~0.5), poorly elongated (CHR<2), and subsymmetrical is basal and mesial/distal views, with symmetrically convex labial and lingual profiles; the denticulated mesial and distal carinae extend to the root (or very close to it) and are centrally positioned on the mesial/distal surface; the mesial denticles are apically hooked or asymmetrically convex; the distal denticles project apically from the distal profile and show well-developed interdenticular sulci; and the enamel surface texture is irregular (Hendrickx et al., 2020a). Only abelisaurid lateral teeth display such a combination of dental features, and the specimen is confidently referred to this clade based on its external morphology, the results of the cladistic and machine learning analyses, and the stratigraphic and geographic context given the abundance of abelisaurid material in Maastrichtian deposits of India (Wilson et al., 2003; Novas et al., 2004, 2010; Khosla and Lucas, 2023). Based on the results of the phylogenetic relationships on ceratosaurs obtained by Hendrickx et al. (2024), we additionally tentatively assign this specimen to Majungasaurinae, as all abelisaurids from the latest Cretaceous of India are classified to this clade by these authors.

DISCUSSION

Paleogeographic implications

The presence of isolated abelisaurid teeth in Upper Cretaceous deposits of Patagonia, northern Argentina, and India is not surprising, since abelisaurid theropods are among the typical apex terrestrial predators in all Late Cretaceous ecosystems of Argentina (Calvo *et al.*, 2004; Novas

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

et al., 2013; Ezcurra and Novas, 2016; Cerroni et al., 2020; Agnolín et al., 2022) and India (Wilson et al., 2003; Novas et al., 2004, 2010). Likewise, an isolated tooth identified as belonging to an abelisaurid was already reported from the Kimmeridgian—Tithonian Tacuarembó Formation of Uruguay by Soto et al. (2023) and the identification of a second abelisaurid tooth (Fig. 10) from these deposits provides further support for the presence of this clade in South America during the Late Jurassic. Conversely, the referral of isolated theropod teeth from the Middle Jurassic of Madagascar (Fig. 9) to Abelisauridae is particularly interesting and provides crucial information on the paleogeographic distribution and evolutionary history of this important theropod clade. Although the dental material from the Middle Jurassic of Madagascar was already regarded as likely representing abelisaurid teeth by Maganuco et al. (2005) and Soto et al. (2023), our study is the first to confirm this referral with computational techniques, corroborating the presence of Abelisauridae in Gondwana before the Late Jurassic.

Pol and Rauhut (2012) were the first to argue the presence of this clade in the Middle Jurassic based on a particularly complete skeleton from the Cañadón Asfalto Formation of Cerro Cóndor, Chubut Province, Patagonia. By giving the genus name *Eoabelisaurus*, they showed that this medium-sized (6-6.5 m; Pol and Rauhut, 2012) theropod was clearly an abelisaurid, making it the earliest member of this clade and pushing back its origins to the Middle Jurassic while abelisaurid theropods were thought to be restricted to the Cretaceous (Carrano and Sampson, 2008; Novas *et al.*, 2013). Remains from the Jurassic referred to abelisaurid theropods are meager and their referral to this clade is either tentative (Rauhut, 2011; Rauhut and Pol, 2021) or debated (e.g., Novas *et al.*, 2013; Tortosa *et al.*, 2014; Gerke and Wings, 2016; Hendrickx *et al.*, 2020a; Soto *et al.*, 2023). To this day, Jurassic remains attributed to Abelisauridae includes *Eoabelisaurus* from the Cañadón Asfalto Formation (now dated to the Toarcian, Early Jurassic; Cúneo *et al.*, 2013; Rauhut and Pol, 2019; Fantasia *et*

al., 2021) of Patagonia (Pol and Rauhut, 2012), two isolated teeth from the Kimmeridgian-Tithonian of Portugal (Hendrickx and Mateus, 2014), one single isolated tooth from the Late Jurassic of Uruguay (Soto et al., 2023), one isolated tibia from the Kimmeridgian-Tithonian Tendaguru beds of Tanzania (Rauhut, 2011), an anterior cervical vertebra and a set of fragmented cranial and postcranial remains from the Oxfordian-Kimmeridgian Cañadón Calcáreo Formation of Chubut, Patagonia (Rauhut and Pol, 2021), and an isolated tooth from the Late Jurassic or the Early Cretaceous of the Araripe basin, Brazil (Ribeiro *et al.*, 2025). The postcranial material from the Late Jurassic of Tanzania and Patagonia were, however, tentatively referred to Abelisauridae (Rauhut, 2011; Rauhut and Pol, 2021), and many authors cast doubt on the abelisaurid affinity of the two isolated teeth from the Late Jurassic Portugal, which may instead belong to early branching tetanurans such as allosauroids (Gerke and Wings, 2016; Malafaia et al., 2017; Hendrickx et al., 2020b; Soto et al., 2023; C.H. pers. obs.). The abelisaurid affinity of *Eoabelisaurus*, which is by far the most complete of the putative abelisaurid material from the Jurassic, was also challenged by various authors whose results of the cladistic analyses performed on independent datamatrices classify it as an early branching neoceratosaur (Aranciaga Rolando et al., 2021; Hendrickx et al., 2024), a nonabelisaurid abelisauroid (Tortosa et al., 2014; Rauhut and Pol, 2021), or a ceratosaurid (Delcourt, 2018), restricting all taxa recovered among Abelisauridae to the Cretaceous. This study is, therefore, one of the few to confidently refer theropod material from the Jurassic to Abelisauridae using cladistic techniques. Our referral of the dental material from Madagascar (Fig. 9) to a Jurassic abelisaurid

Our referral of the dental material from Madagascar (Fig. 9) to a Jurassic abelisaurid could be challenged in two ways: i) the dental material from Madagascar is not from an abelisaurid but from a ziphodont theropod with a similar dental morphology; or ii) it is from an abelisaurid that lived in the Cretaceous. Although distantly related theropods can superficially exhibit similar dental morphologies (e.g., Hendrickx *et al.*, 2019), we reject the

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

first hypothesis on the ground that no theropod clades other than Abelisauridae have teeth that have a combination of the numerous dental features present in the mesialmost, transitional, and lateral dental morphotypes from Madagascar. Based on an extensive survey of the dentition of ziphodont theropods by four of us (C.H., M.S., J.G.M., S.M.), none other than abelisaurids bear teeth with both mesial and distal denticulated carinae extending to the root, a straight to convex distal profile of the crown, and an irregular enamel surface texture; mesialmost teeth with a weak constriction between crown and root, a parlinon-shaped crosssection outline, and a CBR close to 0.7; transitional teeth with a parlinon cross-section having lingual concavities adjacent to the carinae; and lateral teeth with centrally positioned mesial and distal carinae, hooked distal and sometime mesial denticles, and well-developed interdenticular sulci. If the presence of Middle Jurassic non-abelisaurid theropods that convergently acquired abelisaurid dental morphology cannot be rejected, we disregard this hypothesis based on our current knowledge on theropod dental anatomy. The second hypothesis, which would appear to be more conceivable based on the presence of the abelisaurid Majungasaurus in the Mahajanga basin, whose dental morphology is surprisingly similar to that of the dental morphotypes here described, is also confidently rejected. Maganuco et al. (2005) indeed wrote that "despite the lacking of more specific stratigraphic data, the general features of such well exposed, subhorizontal continental deposits, locally containing heteropies with transgressive marine sediments, as evidenced by petrographic features and faunal assemblages, allow us to state that the material pertains without doubt to a single Subunit referable to the Isalo IIIb" (Maganuco et al., 2005, p. 166), a unit formerly known as the "Faciès mixte - dinosauriens" of Besairie and Collignon (1972) and currently referred to as the Sakaraha Formation, well-dated to the Bathonian (Geiger et al., 2004; Maganuco et al., 2005, 2007; Bindellini and Dal Sasso, 2021; Flynn et al., 2022). The abelisaurid affinity of the teeth from the Middle Jurassic of Madagascar consequently

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

provides strong support for the presence and radiation of this clade in Gondwana as early as the Middle Jurassic, as claimed by Pol and Rauhut's (2012).

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1074

1075

Implications on the earliest discovery of non-avian theropod and abelisaurid remains in the world

Using both cladistic and machine learning techniques, this study is the first to reveal that NHMUK R4190 (Fig. 15) from the Lameta Formation of Takli, India, and representing, to our knowledge, the first published record of a non-avian theropod in Asia (Hendrickx et al., 2015a), can confidently be referred to an abelisaurid theropod. This is the second record of abelisaurid dental material representing the earliest record of non-avian theropod body fossils in the scientific literature on a continent. In 1896, French palaeontologist Charles Depéret (1896a, 1896b) reported two theropod teeth, an ungual phalanx, and a caudal vertebra from the Maastrichtian Maevarano Formation of northwestern Madagascar (Fig. 16.1-16.3). Krause et al. (2007) provided details on the history of the discovery of these remains that were collected by Mr. Landillon during an expedition led by French military physician Dr. Félix Salètes in the area of the village Maevarana, on the northeastern bank of the Betsibokar River in 1895. If the provenance of the dinosaur postcranial material is unknown, Depéret (1896a) stated that the two theropod teeth came from Locality 2, which lies just north of the Amboanemba Escarpment (Krause et al., 2007: figs. 2, 5). The brief report of the existence of dinosaur remains in Madagascar by Depéret (1896b) from the 24th of February 1896 represents the first published record of non-avian theropod skeletal remains in Africa (Hendrickx et al., 2015a). Depéret (1896a) provided a description and several illustrations of the dinosaurian material in an article from the 16th of March 1896 in which he referred the theropod remains to the new Megalosaurus species M. crenatissimus. The two teeth, which are now deposited at the Faculté des Sciences de Lyon under specimen number FSL

92.306a,b (Fig. 16.2-16.3), were referred to *Majungasaurus crenatissimus* by Krause *et al.* (2007) and Smith (2007). The latter explored the taxonomic affinity of the dental material using discriminant analysis and confidently referred the most complete crown (FSL 92.306a) to this abelisaurid species, noting that it was similar to the distal dentary teeth of *Majungasaurus* (2007). Based on Smith's (2007) expertise on *Majungasaurus* dental anatomy, combined with the paleogeographic and stratigraphic context of the material, we fully agree that the two shed teeth reported by Depéret (1896a, 1896b) almost certainly belong to *Majungasaurus*, making them (along with the two vertebrae and the pedal ungual phalanx) the earliest non-avian theropod remains from Africa to be published in the literature.

Interestingly, the discovery and earliest reports on isolated theropod teeth are intrinsically linked to the first discoveries of theropod remains in the world and the emergence of theropod palaeontology in the 18th and 19th century. In Europe, 125 years before the description of Megalosaurus by Buckland (1824), Welsh naturalist Edward Lhuyd (1699) identified in his Lithophylacii Britannici Ichnographica specimen 1328 from Stonesfield as the tooth of a fish; however, plate 16 illustrating the specimen suggests that this crown likely belonged to Megalosaurus, making it the second published record of a non-avian dinosaur only 22 years after Robert Plot's (1677) description of the distal portion of a Megalosaurus femur famously labelled "Scrotum Humanum" by Richard Brookes (1763). In North America, a set of isolated theropod teeth recovered from Upper Cretaceous deposits at the confluence of the Missouri and Judith rivers of Montana were used by Joseph Leidy (1856) to erect the new species Troodon formosus and Deinodon horridus and represent the first body fossils of a non-avian theropod described in the scientific literature outside Europe (Hendrickx et al., 2015a; Hendrickx and Carrano, 2016). In South America, the description of the first Argentine dinosaur to be named, Loncosaurus argentinus (initially named Megalosaurus argentinus; Huene, 1929), by palaeontologist Florentino Ameghino (1899) based on a

theropod tooth and a femur later referred to an ornithopod (Coria and Salgado, 1996) from the Cenomanian Mata Amarilla Formation of Par-Aik, Río Sehuen, Santa Cruz Province of Argentina (Fig. 16.4-16.5), only predates by six years the earliest published record of nonavian theropod body fossils in South America by Lydekker (1893) (Hendrickx et al., 2015b; Hendrickx and Carrano, 2016). This tooth crown was illustrated as complete by Ameghino (1900, 1906) but Huene (1929), who provided a detailed description of the tooth, noted that it had been reconstructed, preventing referral to a specific theropod clade. The probable abelisaurid tooth MACN 18.172 reported by del Corro (1966) may, therefore, represent the earliest published record of abelisaurid material in Argentina, 19 years before the erection of the clade Abelisauridae by José Bonaparte and Fernando Novas in 1985 (Bonaparte and Novas, 1985). It also likely represents the second published record of abelisaurid dental material from the New World after Price's (1960) report of two isolated theropod teeth, one of which confidently referred to an abeliaurid (Ribeiro et al., 2024a), from the Amazon forest of Brazil. In Europe, if the earliest non-avian theropod remains published in the literature all belong to megalosauroids (Delair and Sarjeant, 2002; Buffetaut, 2010; Spalding and Sarjeant, 2012; Hendrickx et al., 2015a), the first published record of abeliaurid material occurred as early as the late 19th century (Buffetaut, 2025b). According to Buffetaut (2025b), the right femur from the Maastricht beds of the Maastricht area, southern Netherlands, and referred to Megalosaurus bredai by Harry Govier Seeley in 1883 (Seeley, 1883) belongs to an abelisaurid, making it the first published record of a definite abelisaurid in Europe and the latest known occurrence of this clade on this continent (Buffetaut, 2025b). Buffetaut (2025b) further argued that the isolated theropod teeth from the Campanian Gosau Formation of Muthmannsdorf, Lower Austria, described by Seeley (1881) as Megalosaurus pannoniensis (Fig. 16.6-16.7) may represent the earliest published record of abelisaurid remains from Europe, noting that even though these teeth were referred to non-abelisaurid theropods by

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

various authors (Ősi *et al.*, 2010; Malafaia *et al.*, 2025), an abelisaurid affinity cannot be excluded. We, however, concur with Ősi *et al.* (2010) and Malafaia *et al.* (2025) that the tooth illustrated by Ősi *et al.* (2010: fig. 6C) likely belongs to an early branching tetanuran based on the well-visible braided surface texture of the enamel, a dental feature absent in abelisaurid teeth (Hendrickx *et al.*, 2020a).

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1149

1150

1151

1152

1153

Dental evolution in Abelisauridae

The particularly incomplete, if not fully unpreserved, dentition of many abelisauroids (e.g., Eoabelisaurus, Vespersaurus, Dahalokely, Ilokelesia, Carnotaurus, Koleken) combined with the highly debated classification of ceratosaurs (e.g., the placement of elaphrosaurines within noasaurids or at the base of the ceratosaur clade) currently prevents a more confident understanding of dental evolution in Abelisauridae. Even though abelisaurid teeth exhibit many diagnostic features such as a mesial carina extending to the root (char. 89:1-2), a straight or slightly convex distal profile of the crown (char. 79:1-2), hooked distal denticles (char. 99:2), well-developed interdenticular sulci between distal denticles (char. 116:2), an irregular enamel surface texture (char. 128:0), and mesial teeth with a salinon cross-section outline at the base crown (char. 51:2), it is the combination of these dental features that allows the identification of isolated abelisaurid teeth. Indeed, lateral teeth with a mesial carina reaching the cervix is seen in all ceratosaurs, a straight or slightly convex distal margin is present in the lateral teeth of ceratosaurids and Noasaurus, some of the lateral teeth of Masiakasaurus bear hooked distal denticles, Ceratosaurus lateral teeth have well-developed interdenticular sulci, the enamel surface texture is irregular in Saltriovenator and Noasaurus, and a salinon cross-section outline at the base crown also characterizes the mesialmost teeth of Masiakasaurus (Hendrickx et al., 2019). Results of the dental evolution analysis indeed shows that none of these crown-based characters evolved in abelisaurids. Instead, it is the

proportion of different parts of the dentition that appeared to have changed during the radiation of Abelisauridae, the latter being diagnosed by having mesialmost dentary teeth significantly smaller than mid- and distal dentary teeth (char. 30:2) and the tallest crowns in the middle portion of the maxilla (char. 42:1) (Fig. 5). An increase in the number of dentary teeth to more than 15 (char. 28:2) and the development of interdenticular sulci between distal denticles in mesial teeth (char. 69:2) also evolved in Abelisauridae when Elaphrosaurinae forms an early radiation of ceratosaurs (Fig. 5.1). It must be noted that our analysis is significantly biased, as it is limited to Cretaceous abelisaurids. The dentition of the only putative abelisaurid from the Jurassic, Eoabelisaurus, is extremely fragmentary and restricted to a single unerupted tooth from a small portion of the maxilla (Pol and Rauhut, 2012). Photos shared by colleagues show that this average maxillary tooth (3-3.5 cm) features a mesial denticulated carina extending to or near the root, a weakly concave distal profile, and comparatively small mesial and distal denticles (~10 de/5 mm). This extremely limited dental information is insufficient to draw any conclusion on dental changes in the early evolution of Abelisauridae, assuming *Eoabelisaurus* is indeed an abelisaurid. The abelisaurid teeth from Madagascar nonetheless offer an opportunity to better understand dental evolution in this clade during the Middle Jurassic. The external morphology of the mesial, transitional, and lateral teeth from Madagascar clearly indicates that the acquisition of typical abelisaurid crown-based traits occured early in the evolutionary history of Abeliaauridae, the mesialmost teeth having already the two concave surfaces adjacent to the carinae lingually, a constriction between crown and root, convex mesial and distal profiles with denticulated carinae extending over the whole crown height, and a salinon-cross section outline with a strongly convex labial surface and a biconcave lingual one (Fig. 9.1-9.8). Lateral teeth are also identical to those of Cretaceous abelisaurids in having a straight to slightly convex distal profile, centrally positioned mesial and distal carinae on the crown extending to the root, hooked distal

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

denticles, and long interdenticular sulci curving basally (Fig. 9.16-9.22). The only plesiomorphic dental features we could observe in the putative abelisaurid lateral teeth from the Middle Jurassic of Madagascar (Supplementary data Appendix 1: Fig. A1) and the Late Jurassic of Uruguay (Fig. 10) is the presence of a mesial denticulated carina that does not extend to the root, a trait also seen in the ceratosaurids *Genyodectes* and possibly *Ceratosaurus* (C.H. pers. obs.). With a crown height not exceeding 2.5 cm, the abelisaurid dental material from Madagascar additionally aligns with the apparent reduction in body size that abelisaurids seem to have undergone from the Early Jurassic, with the medium-bodied (5.82 m in body length) *Eoabelisaurus* with maxillary teeth of ~3.5 cm, to the Early Cretaceous with the small-bodied (1.42 m in body length; Pereyra *et al.*, 2025) *Spectrovenator ragei* (Zaher *et al.*, 2020) from the Barremian-Aptian of Brazil (1.4 cm for mx6; n.b., this taxon might, however, represent a juvenile individual; see below) and the medium-bodied (3.56 m) *Genusaurus sisteroni* (Accarie *et al.*, 1995; Buffetaut *et al.*, 1995; Buffetaut, 2025a) from the Albian of France (Grillo and Delcourt, 2017; Pereyra *et al.*, 2025). However, more data is needed to confirm such a trend.

Our understanding of dental evolution in Early Cretaceous forms is essentially based on the dentition of *Spectrovenator ragei* (Zaher *et al.*, 2020), which is extremely similar to that of Late Cretaceous abelisaurids. Our dental analysis indeed reveals that its dentition only differs from that of more derived abelisaurids in the absence of apically inclined distal denticles in lateral teeth (Fig. 5.1-5.2). Based on the plesiomorphic morphology of the temporal region, the reduced dorsoventral depth of the dentary, and the absence of a kinetic intramandibular joint, *Spectrovenator* was described by Zaher *et al.* (2020) as retaining a more generalized feeding strategy comparable to that of other theropods and differing from the specialized feeding strategy of Late Cretaceous abelisaurids (Therrien *et al.*, 2005; Canale *et al.*, 2009). The dental morphology of *Spectrovenator*, however, does not support this

hypothesis and instead concurs with the results of Pereyra *et al.*'s (2025) recent study on maxilla morphology in ceratosaurs, which finds that the hunter specialization already appeared in Early Cretaceous abelisaurids. We additionally note that the particularly small body size of *Spectrovenator* may result from the immaturity of this abelisaurid, whose feeding strategy may have differed from adult individuals. We, indeed, observe that the mesial denticles from the lateral dentition of *Spectrovenator* are significantly smaller than the distal ones (DSDI>1.2), a dental feature observed in juvenile abelisaurids (Fanti and Therrien, 2007). The distal denticles from the maxillary teeth are also relatively large in proportion to crown height (DCR of 2.46-2.71); however, this dental feature is also observed in *Kryptops* from the Early Cretaceous of northern Africa (C.H. pers. obs.), suggesting that a decrease in denticle size compared to crown height (DCR<2) may have occurred in Late Cretaceous abelisaurids.

Even though the dentition of Late Cretaceous abelisaurids is relatively well-known, their debated relationships complicate our understanding of dental evolution in later branching Abelisauridae. Mapping dental apomorphies on two hypotheses of abelisaurid relationships (i.e., Hendrickx and Cau's topologies; Fig. 5.1, 5.3) shows that abelisaurids more derived than *Rugops* developed mesialmost and mid-maxillary teeth of similar size. Similarly, dental evolution in members of the clade Brachyrostra + Majungasaurinae, as recovered in Hendrickx's topology (Fig. 5.1), is marked by an increase in crown height (crowns between 3 and 6 cm; char. 41:2), a trend probably linked to the body size increase observed in some Late Cretaceous abelisaurids. Dental evolution within Brachyrostra and Abelisaurinae involves minor changes, primarily concerning denticle shape and the development of interdenticular sulci. Brachyrostra is indeed diagnosed by having subquadrangular mesial denticles in lateral teeth (char. 102:1) when it includes *Skorpiovenator*, *Abelisaurus* and *Aucasaurus* (Hendrickx's topology) and subrectangular distal denticles in lateral teeth (char. 103:1) when

It includes *Arcovenator*, *Skorpiovenator*, *Llukalkan*, and *Aucasaurus* (Pol's topology).

Likewise, Abelisaurinae is diagnosed by poorly developed interdenticular sulci between distal denticles of the lateral crowns (char. 116:1) when *Abelisaurus* is closely related to *Majungasaurus* and *Indosuchus* (Pol's topology; Fig. 5.2), and biconvex mesial denticles in lateral crowns (char. 105:1) when *Abelisaurus* forms a clade with *Aucasaurus* (Cau's topology; Fig. 5.3). Functionally speaking, Sampson and Witmer (2007) argued that the dentition of *Majungasaurus* and other closely related abelisaurids with short-crowned lateral teeth and robust premaxillary teeth (e.g., *Indosuchus*, *Rugops*, *Kryptops*, *Aucasaurus*, Kem Kem abelisaurid taxon), combined with other suite of non-dental features such as a broad and abbreviated skull, particularly high bite forces, as well as expanded occiput and neck musculature, were adaptation towards a bite-and-hold feeding behavior. According to Sampson and Witmer (2007), such a mode of predation entailed relatively few long penetrating bites followed by powerful neck retraction to produce massive wounds in a struggling large-bodied prey.

All Late Cretaceous abelisaurids did not have the same dental morphology as *Majungasaurus* and other closely related taxa from the Southern Hemisphere. Our study shows that *Chenanisaurus* from the Maastrichtian of Northern Africa (Longrich *et al.*, 2017) and *Arcovenator* from the Campanian of Southern Europe (Tortosa *et al.*, 2014) have the largest number of dental apomorphies among Abelisauridae, suggesting a particularly derived dental morphology. We, however, note that the high number of apomorphic dental features in *Chenanisaurus* most likely results from its rather early branching placement among Abelisauridae (Longrich *et al.*, 2017), a position that should be seen as tentative owing to the incompleteness of this taxon (i.e., *Chenanisaurus* only preserves an anterior portion of the dentary and three isolated teeth). We will, therefore, focus solely on the distinctive dentition of *Arcovenator* previously noted by Hendrickx *et al.* (2020a), as the various phylogenetic

positions of Arcovenator among abeliaurids do not have any influence on the number (6) and type of dental autapomorphies diagnosing this abelisaurid (Fig. 5). In all three topologies, the lateral dentition of Arcovenator is indeed diagnosed by a strongly concave distal margin of the crowns (char. 79:0), a strongly labially deflected distal carina (char. 94:1) extending far below the cervical line (char. 92:1), a denticle crown ratio lower than 1 (i.e., the distal denticles are particularly small compared to the crown; char. 97:1), lower number of denticles apically than at the mid-crown (char. 111:1), and distal denticles larger than mesial ones (DSDI>1.2; char. 112:2). Lateral crowns with such a combination of dental features are peculiar among abelisaurids and reminiscent to those of piatnitzkysaurids (Hendrickx et al., 2019), possibly reflecting similar feeding strategies among members of the latter clade and *Arcovenator*. We, indeed, reject the hypothesis that the isolated teeth assigned to *Arcovenator* belong to a non-abelisaurid theropod for the following reasons: i) one of the teeth was recovered in a single sedimentary layer within a limited area with the rest of the holotypic material of Arcovenator (Tortosa et al., 2014); ii) unlike the Apulian archipelago of eastern Europe where medium-bodied early branching tetanurans were also present during the Late Cretaceous, abelisaurids are the unique large-bodied theropods with tall (>3 cm) ziphodont crowns that inhabited the Ibero-Armorican domain of southern Europe during the latest part of the Cretaceous (e.g., Le Loeuff and Buffetaut, 1991; Ösi et al., 2010; Csiki-Sava et al., 2015; Isasmendi et al., 2022, 2024; Malafaia et al., 2025). Although the discovery of additional cranial and postcranial material in Arcovenator is needed to support such a hypothesis, its dental morphology suggests that the feeding ecology of this taxon and other closely related Iberian abelisaurids with similar dental morphologies (Torices et al., 2015; Pérez-García et al., 2016; Isasmendi et al., 2024; Malafaia et al., 2025) differed from other Late Cretaceous abelisaurids from the Southern Hemisphere.

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

The combined results of the WMPD, morphospace, and phylogenetically informed regression analyses provide an idea of the evolutionary patterns in ceratosaur dental morphology. WMPD values reveal higher morphological disparity during the Early Cretaceous for both mesial and lateral teeth, followed by a notable decline in the Late Cretaceous (Fig. 6). This temporal shift suggests an initial phase of morphological niche or ecological differentiation in ceratosaurs, likely linked to an adaptive radiation, followed by increasingly conservative morphology, potentially associated with particular ecological specialization. Morphospace occupation patterns reinforce this interpretation. Early Cretaceous ceratosaur taxa exhibit a more restricted distribution within the morphospace, while Late Cretaceous forms occupy a broader range of morphological variation, particularly in the lateral dentition (Fig. 7.2). Notably, certain clades such as Noasauridae and nonbrachyrostran abelisaurids maintain distinct positions within morphospace, whereas brachyrostrans and majungasaurines display partial overlap, with *Chenanisaurus* and Arcovenator deviating notably from the occupation of Gondwanan abelisaurids (Fig. 7.2), evidence of taxa-specific morphological specialization in northern Africa and Europe. Finally, pGLS analyses demonstrate no significant correlation between body size and PCo1 of dental variation for either mesial or lateral dentition, indicating that morphological disparity in abelisaurid teeth was not driven by body size (Fig. 8). Together, these results suggest that ecological and functional factors—rather than allometry—played a primary role in shaping dental morphology in this clade.

CONCLUSIONS

The identification of a set of abelisaurid shed tooth crowns from various Jurassic and Cretaceous localities of Gondwana using advanced phylogenetic and machine learning techniques reveal several important points that can be summarized as follows: i) abelisaurids were present in what is now Madagascar during the Middle Jurassic, providing strong support

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

for the radiation of this clade as early as the Early Jurassic; ii) teeth of Middle Jurassic abelisaurids are particularly similar to those of Cretaceous forms, suggesting that abelisaurid crown-based traits were acquired early in the evolution of Abelisauridae; iii) dental evolution in Early Cretaceous abelisaurids is characterized by a decrease in size of the mesialmost dentary dentition, a displacement of the tallest crowns towards the middle part of the maxilla, and a possible increase in the number of dentary teeth; iv) in Late Cretaceous abelisaurids, dental evolution is characterized by the development of mesialmost and mid-maxillary teeth of similar size, a possible increase in crown height to more than 3 cm, and, in more derived abelisaurid subclades, subtle dental changes mainly related to denticle shape; v) the strongly apomorphic lateral dentition of Arcovenator suggests that the dietary ecology of this taxon and other closely related species from the latest part of Cretaceous in southern Europe departed from the specialized feeding strategies of Gondwanan abelisaurids; vi) two isolated abelisaurid teeth identified in this study, NHMUK R4190 mentioned by Hislop (1861) and MACN 18.172 reported by del Corro (1966), represents, to our knowledge, the earliest historical record of a non-avian theropod in Asia and the first published record of an abelisaurid from Argentina, respectively.

This study is the first to use cladistic methods conducted on datasets separated into tooth row partitions using two fully constrained topological trees representing alternative hypotheses of theropod relationships to classify shed dinosaur teeth, further helping to identify isolated theropod teeth from the mesial and lateral dentition with better confidence. Likewise, our new morphometric-driven machine-learning pipeline presented here streamlines the identification of isolated dinosaur teeth, offering a demonstrably cleaner and more transparent workflow than earlier rule-based or ad-hoc approaches. By systematically testing four algorithms across graded reference sets, we show that model architecture is almost immaterial; once biases introduced by uneven taxon sampling and body size effects are

minimized, all classifiers converge on the same answers with comparable accuracy. Crucially, the protocol's emphasis on balanced, size-controlled training data and explicit probability outputs mitigates the "hidden" omissions and subjective weighting that affected previous methods, allowing palaeontologists to quantify both confidence and error rates. In short, these techniques provide a reproducible, bias-aware framework in which the reliability of clade assignments remains modest but now with a firm basis and clear path drawn; thereby raising the bar for future studies that rely on isolated dental material.

This study is additionally the first to apply WMPD, morphospace, and phylogenetically informed regression analyses to theropod teeth. Our results show that ceratosaur dental disparity was greater during the Early Cretaceous than in the Late Cretaceous. This shift suggests an initial phase of ecological diversification followed by increasing conservative morphology. Morphospace analyses also highlight the distinct positioning of certain groups such as Noasauridae and non-brachyrostran Abelisauridae, as well as taxa such as *Chenanisaurus* and *Arcovenator*, underscoring the presence of taxon-specific morphological trends in abelisaurids from the Northern Hemisphere that may reflect particular adaptations. Finally, pGLS analyses reveal no significant correlation between body size and dental morphology, indicating that variation in ceratosaur teeth was largely decoupled from allometric scaling and more likely shaped by functional and ecological pressures more complex.

ACKNOWLEDGEMENTS

We thank Zulma Gasparini (MLP), Pablo Ortiz, Rodrigo Gonzalez (PVL), Fernando Novas (MACN), Sandra Chapman, and Paul Barrett (NHMUK) for access to the specimens under their care. Z. Gasparini, A. Rojas, C. Arezzo and M. I. Aspilleira are thanked for allowing us to study the dental material. G. Eastman helped with the study of the new Uruguayan specimen. We are indebted to the Martínez family who permitted MSN to extract fossils from

1373	the Bidegain Quarry. Rafael Delcourt, Oliver Rauhut, Fernando E. Novas, and Nicholas
1374	Longrich are warmly thanked for sharing photos of the dentition of Spectrovenator,
1375	Eoabelisaurus, Rahiolisaurus and Chenanisaurus, respectively. We additionally thank Lucio
1376	Catalano Alvarez for pointing out errors in the definitions of some ceratosaur clades provided
1377	by the first author and Gabriele Bindellini for allowing us to use an illustration he made in
1378	Figure 1.2. We are grateful to Mauricio Cerroni and Diego Pol for inviting us to contribute to
1379	this Special Issue "40th anniversary of Abelisauridae" and thank the two anonymous
1380	reviewers for their insightful comments and suggestions that significantly improved this
1381	contribution. We acknowledge the use of the Willi Hennig Society edition of TNT for the
1382	cladistic analysis and Phylopic for the theropod silhouettes used the figures, and thank Scott
1383	Hartman, Tasman Dixon, Jagged Fang Designs, Ville-Veikko Sinkkonen, and Francisco
1384	Garza Lorenzo for sharing their artworks on this website. This research was financially
1385	supported by the Fundación Miguel Lillo, the Consejo Nacional de Investigaciones
1386	Científicas y Técnicas (CONICET), and the Agencia Nacional de Promoción Científica y
1387	Tecnológica, Argentina (Beca Pos-doctoral CONICET Legajo 181417) to CH, and by the
1388	Jurassic Foundation and CSIC (C302/347) to MSN.

REFERENCES

- Accarie, H., Beaudoin, B., Dejax, J., Fries, G., Michard, J.G. and Taquet, P. 1995. Découverte d'un dinosaure théropode nouveau (*Genusaurus sisteronis* ng, n. sp.) dans l'Albien marin de Sisteron (Alpes de Haute-Provence, France) et extension au Crétacé inférieur de la lignée cératosaurienne. *Comptes Rendus de l'Académie Des Sciences. Série 2.*Sciences de La Terre et Des Planètes 320: 327–334.
- Agnolín, F.L., Cerroni, M.A., Scanferla, A., Goswami, A., Paulina-Carabajal, A., Halliday, T., Cuff, A.R. and Reuil, S. 2022. First definitive abelisaurid theropod from the Late Cretaceous of Northwestern Argentina. *Journal of Vertebrate Paleontology* 41: e2002348.
- Ameghino, F. 1899. Nota preliminar sobre el *Loncosaurus argentinus*, un representante de la familia de los Megalosauridae en la República Argentina. *Anales de La Sociedad Científica Argentina* 47: 61–62.
- 1402 Ameghino, F. 1900. L'âge des formations sédimentaires de Patagonie. *Anales de La Sociedad* 1403 *Científica Argentina* 50: 145–165.

- Ameghino, F. 1906. Les formations sédimentaires du Crétacé supérieur et du Tertiaire de Patagonie. *Anales Del Museo Nacional de Buenos Aires* 3: 1–568.
- 1406 Aranciaga Rolando, M., Cerroni, M.A., Garcia Marsà, J.A., Agnolín, F. l., Motta, M.J.,
- Rozadilla, S., Brisson Eglí, F. and Novas, F.E. 2021. A new medium-sized abelisaurid (Theropoda, Dinosauria) from the late cretaceous (Maastrichtian) Allen Formation of
- Northern Patagonia, Argentina. *Journal of South American Earth Sciences* 105: 102915.
- Baiano, M.A., Coria, R., Chiappe, L.M., Zurriaguz, V. and Coria, L. 2023. Osteology of the axial skeleton of *Aucasaurus garridoi*: phylogenetic and paleobiological inferences. *PeerJ* 11: e16236.
- Baiano, M.A., Pol, D., Bellardini, F., Windholz, G.J., Cerda, I.A., Garrido, A.C. and Coria,
 R.A. 2022. *Elemgasem nubilus*: a new brachyrostran abelisaurid (Theropoda,
 Ceratosauria) from the Portezuelo Formation (Upper Cretaceous) of Patagonia,
 Argentina. *Papers in Palaeontology* 8: e1462.
- Barker, C.T., Handford, L., Naish, D., Wills, S., Hendrickx, C., Hadland, P., Brockhurst, D.
 and Gostling, N.J. 2024. Theropod dinosaur diversity of the lower English Wealden:
 analysis of a tooth-based fauna from the Wadhurst Clay Formation (Lower
 Cretaceous: Valanginian) via phylogenetic, discriminant and machine learning
 methods. *Papers in Palaeontology* 10: e1604.
- Bergmeir, C. and Benítez, J.M. 2012. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS. *Journal of Statistical Software* 46: 1–26.
 - Besairie, H. and Collignon, M. 1972. Géologie de Madagascar. I. Les terrains sédimentaires. Annales Géologiques de Madagascar 35: 1–465.
 - Bindellini, G. and Dal Sasso, C. 2021. Sauropod teeth from the Middle Jurassic of Madagascar, and the oldest record of Titanosauriformes. *Papers in Palaeontology* 7: 137–161.
- Bonaparte, J.F. 1991. The Gondwanian theropod families Abelisauridae and Noasauridae. *Historical Biology* 5: 1–25.
- Bonaparte, J.F. and Bossi, G.E. 1967. Sobre la presencia de dinosaurios en la Formación Pirgua del Grupo Salta y su significado cronológico. *Acta Geológica Lilloana* 9: 25–44.
- Bonaparte, J.F. and Powell, J.E. 1980. A continental assemblage of tetrapods from the Upper Cretaceous beds of El Brete, northwestern Argentina (Sauropoda-Coelurosauria-Carnosauria-Aves). *Mémoires de La Société Géologique de France, Nouvelle Série* 1438 139: 19–28.
- Bonaparte, J.F. and Novas, F.E. 1985. *Abelisaurus comahuensis*, n.g., Carnosauria del Crétacico Tardio de Patagonia. *Ameghiniana* 21: 259–265.
- Bonaparte, J.F., Salfity, J.A., Bossi, G. and Powell, J.E. 1977. Hallazgo de dinosaurios y aves cretácicas en la Formación Lecho de El Brete (Salta), próximo al límite con Tucumán.

 Acta Geológica Lilloana 14: 5–17.
- Brookes, R. 1763. The Natural History of Waters, Earths, Stones, Fossils, and Minerals, with
 Their Virtues, Properties, and Medicinal Uses: To Which Is Added, The Method in
 Which LINNAEUS Has Treated These Subjects. J. Newbery, London, .
- Brum, A.S., Pêgas, R.V., Bandeira, K.L.N., Souza, L.G., Campos, D.A. and Kellner, A.W.A. 2021. A new unenlagiine (Theropoda, Dromaeosauridae) from the Upper Cretaceous of Brazil. *Papers in Palaeontology* 7: 2075–2099.
- Brusatte, S.L., Benton, M.J., Ruta, M. and Lloyd, G.T. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. *Science* 321: 1485–1488.
- Buckland, W. 1824. Notice on the *Megalosaurus* or great fossil lizard of Stonesfield. *Transactions of the Geological Society* 21: 390–397.

1426

1427

1428

- Buffetaut, E. 2010. *Spinosaurs* before Stromer: early finds of spinosaurid dinosaurs and their interpretations. *Geological Society, London, Special Publications* 343: 175–188.
- Buffetaut, E. 2024. O registo fóssil descontínuo de Abelisauridae europeu (Dinosauria: Theropoda) e sua importância para a evolução e paleobiogeografia dos abelissaurídeos. *Evolução* 3: 19–21.
- Buffetaut, E. 2025a. Furileusaurian osteological characters in *Genusaurus sisteronis* Accarie *et al.*, 1995, an abelisaurid dinosaur from the Albian (Lower Cretaceous) of south-eastern France. *Carnets Natures* 12: 79–88.
- Buffetaut, E. 2025b. Abelisaurids before *Abelisaurus*: early reports of abelisaurid dinosaurs from Europe. *Historia Natural (Tercera Serie)* 15: 181–194.
 - Buffetaut, E., Mechin, P. and Mechin-Salessy, A. 1988. Un dinosaure théropode d'affinités gondwaniennes dans le Crétacé supérieur de Provence. *Comptes Rendus de l'Académie Des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de La Terre* 306: 153–158.
- Buffetaut, E., Le Loeuff, J., Accarie, H., Beaudoin, B., Dejax, J. and Fries, G. 1995.
 Commentaire à la note: découverte d'un dinosaure théropode nouveau (*Genusaurus sisteronis* ng, n. sp.) dans l'Albien marin de Sisteron (Alpes de Haute-Provence,
 France) et extension au Crétacé inférieur de la lignée cératosaurienne. *Comptes Rendus de l'Académie Des Sciences. Série 2. Sciences de La Terre et Des Planètes* 321: 79–83.
- 1474 Calvo, J.O., Rubilar-Rogers, D. and Moreno, K. 2004. A new Abelisauridae (Dinosauria: 1475 Theropoda) from northwest Patagonia. *Ameghiniana* 41: 555–563.
- 1476 Canale, J.I., Scanferla, C.A., Agnolín, F.L. and Novas, F.E. 2009. New carnivorous dinosaur 1477 from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods. 1478 *Naturwissenschaften* 96: 409–414.
- Canale, J.I., Apesteguía, S., Gallina, P.A., Mitchell, J., Smith, N.D., Cullen, T.M., Shinya, A.,
 Haluza, A., Gianechini, F.A. and Makovicky, P.J. 2022. New giant carnivorous
 dinosaur reveals convergent evolutionary trends in theropod arm reduction. *Current Biology* 32: 3195-3202.e5.
- 1483 Candeiro, C.R.A., Brusatte, S.L. and de Souza, A.L. 2017. Spinosaurid Dinosaurs from the
 1484 Early Cretaceous of North Africa and Europe: Fossil Record, Biogeography and
 1485 Extinction.
- Candeiro, C.R.A., Ribeiro, T.B., de Paula, T.A., da Costa Pereira, P.V.L.G., Vidal, L., Gil,
 L.M., Dias, T., Gonzalez-Riga, B., Brusatte, S.L. and Carabajal, A.P. 2024. Isolated
 theropod teeth from the Upper Cretaceous of Goias State (Brazil): Northernmost
 occurrence of Abelisauridae from the Bauru Basin. *Journal of South American Earth*Sciences 146: 105075.
- 1491 Carr, T.D. and Williamson, T.E. 2004. Diversity of late Maastrichtian Tyrannosauridae
 1492 (Dinosauria: Theropoda) from western North America. *Zoological Journal of the*1493 *Linnean Society* 142: 479–523.
- 1494 Carrano, M.T. and Sampson, S.D. 2008. The phylogeny of Ceratosauria (Dinosauria: 1495 Theropoda). *Journal of Systematic Palaeontology* 6: 183–236.
- 1496 Carrano, M.T., Sampson, S.D. and Forster, C.A. 2002. The osteology of *Masiakasaurus*1497 *knopfleri*, a small abelisauroid (Dinosauria: Theropoda) from the Late Cretaceous of
 1498 Madagascar. *Journal of Vertebrate Paleontology* 22: 510–534.
- 1499 Carrano, M.T., Wilson, J.A. and Barrett, P.M. 2010. The history of dinosaur collecting in 1500 central India, 1828–1947. *Geological Society, London, Special Publications* 343: 161– 1501 173.
- 1502 Carrano, M.T., Benson, R.B.J. and Sampson, S.D. 2012. The phylogeny of Tetanurae (Dinosauria: Theropoda). *Journal of Systematic Palaeontology* 10: 211–300.

- de Carvalho, J.C. and Santucci, R.M. 2018. New dinosaur remains from the Quiricó Formation, Sanfranciscana Basin (Lower Cretaceous), Southwestern Brazil. *Cretaceous Research* 85: 20–27.
- 1507 Cau, A. 2024. A Unified Framework for Predatory Dinosaur Macroevolution. *Bollettino Della*1508 *Società Paleontologica Italiana* 63: 2.
- 1509 Cau, A. and Paterna, A. 2025. Beyond the Stromer's Riddle: the impact of lumping and splitting hypotheses on the systematics of the giant predatory dinosaurs from northern Africa. *Italian Journal of Geosciences* 144 (2025) f.2.
- 1512 Cerroni, M.A., Canale, J.I., Novas, F.E. and Paulina-Carabajal, A. 2022a. An exceptional 1513 neurovascular system in abelisaurid theropod skull: New evidence from 1514 Skorpiovenator bustingorryi. *Journal of Anatomy* 240: 612–626.
- 1515 Cerroni, M.A., Motta, M.J., Agnolín, F.L., Aranciaga Rolando, A.M., Brissón Egli, F. and 1516 Novas, F.E. 2020. A new abelisaurid from the Huincul Formation (Cenomanian-1517 Turonian; Upper Cretaceous) of Río Negro province, Argentina. *Journal of South* 1518 *American Earth Sciences* 98: 102445.
- 1519 Cerroni, M.A., Baiano, M.A., Canale, J.I., Agnolín, F.L., Otero, A. and Novas, F.E. 2022b.
 1520 Appendicular osteology of *Skorpiovenator bustingorryi* (Theropoda, Abelisauridae)
 1521 with comments on phylogenetic features of abelisaurids. *Journal of Systematic*1522 *Palaeontology* 20: 1–32.
- Chapelle, K.E., Norell, M., Ford, D.P., Hendrickx, C., Radermacher, V.J., Balanmoff, A.,
 Zanno, L.E. and Choiniere, J.N. 2021. A ct-based revised description and phylogenetic
 analysis of the skull of the basal maniraptoran *Ornitholestes hermanni* Osborn 1903.
- 1527 Chen, T. and Guestrin, C. 2016. XGBoost: A Scalable Tree Boosting System. *Proceedings of*1528 the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
 1529 Mining 785–794.
- 1530 Chowchuvech, W., Manitkoon, S., Chanthasit, P., Chokchaloemwong, D., Kosulawatha, W.
 1531 and Ketwetsuriya, C. 2025. Isolated theropod teeth from the Upper Jurassic to Lower
 1532 Cretaceous Khorat Group: Implications for theropod diversity in Thailand. *Cretaceous*1533 *Research* 175: 106147.
- 1534 Coria, R.A. and Salgado, L. 1996. '*Loncosaurus argentinus*' Ameghino, 1899 (Ornithischia, 1535 Ornithopoda): a revised description with comments on its phylogenetic relationships. *Ameghiniana* 33: 373–376.
- 1537 Coria, R.A. and Salgado, L. 1998. A basal Abelisauria Novas, 1992 (Theropoda-Ceratosauria) 1538 from the Cretaceous of Patagonia, Argentina. *Gaia* 15: 89–102.
- del Corro, G. 1966. Un nuevo dinosaurio carnívoro del Chubut (Argentina).
 Communicaciones Del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" e Institutio Nacional de Investigacion de Las Ciencias Naturales:
 Paleontologia 1: 1–4.
- del Corro, G. 1975. Un nuevo saurópodo del Cretácico Superior. *Chubutisaurus Insignis* 229–1544 240.
- 1545 Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. and Brusatte, S.L. 2015. Island 1546 life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of 1547 land-living vertebrates on the Late Cretaceous European archipelago. *ZooKeys* 469: 1– 1548 161.
- Cuesta, E., Vidal, D., Ortega, F., Shibata, M. and Sanz, J.L. 2022. *Pelecanimimus*(Theropoda: Ornithomimosauria) postcranial anatomy and the evolution of the
 specialized manus in Ornithomimosaurs and sternum in maniraptoriforms. *Zoological Journal of the Linnean Society* 194: 553–591.

- Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Escapa, I., Zavattieri, A.M. and Bowring, S.A. 2013. High-precision U–Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: Implications for terrestrial faunal and floral evolution in Jurassic. *Gondwana Research* 24: 1267–1275.
- 1557 Czepiński, Ł. 2023. Skull of a dromaeosaurid Shri devi from the Upper Cretaceous of the
 1558 Gobi Desert suggests convergence to the North American forms. *Acta Palaeontol Pol*1559 68: 227–43.
- Dal Sasso, C., Maganuco, S. and Cau, A. 2018. The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds. *PeerJ* 6: e5976.
- Dalman, S.G., Loewen, M.A., Pyron, R.A., Jasinski, S.E., Malinzak, D.E., Lucas, S.G., Fiorillo, A.R., Currie, P.J. and Longrich, N.R. 2024. A giant tyrannosaur from the Campanian–Maastrichtian of southern North America and the evolution of tyrannosaurid gigantism. *Scientific Reports* 14: 22124.
- Delair, J.B. and Sarjeant, W.A.S. 2002. The earliest discoveries of dinosaurs: the records reexamined. *Proceedings of the Geologists' Association* 113: 185–197.
- Delcourt, R. 2018. Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers. *Scientific Reports* 8: 1–12.
- Delcourt, R. and Grillo, O.N. 2018. Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil. *Cretaceous Research* 84: 515–524.
- Delcourt, R., Brilhante, N.S., Grillo, O.N., Ghilardi, A.M., Augusta, B.G. and Ricardi-Branco, F. 2020. Carcharodontosauridae theropod tooth crowns from the Upper Cretaceous (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications to palaeobiogeography of the group. *Palaeogeography, Palaeoclimatology, Palaeoecology* 556: 109870.
- Delcourt, R., Brilhante, N.S., Pires-Domingues, R.A., Hendrickx, C., Grillo, O.N., Augusta,
 B.G., Maciel, B.S., Ghilardi, A.M. and Ricardi-Branco, F. 2024. Biogeography of
 theropod dinosaurs during the Late Cretaceous: evidence from central South America.
 Zoological Journal of the Linnean Society zlad184.
- Depéret, C. 1896a. Note sur les dinosauriens sauropodes et théropodes du Crétacé supérieur de Madagascar. *Bulletin de La Société Géologique de France* 21: 176–194.
- Depéret, C. 1896b. Sur l'existence de dinosauriens, sauropodes et théropodes dans le Crétacé supérieur de Madagascar. *Comptes Rendus de l'Académie Des Sciences (Paris), Série II* 122: 483–485.
- Ezcurra, M.D. and Novas, F.E. 2016. Theropod dinosaurs from Argentina. *Contribuciones Del Museo Argentino de Ciencias Naturales* 6: 139–156.
- Ezcurra, M.D. and Butler, R.J. 2018. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction. *Proceedings of the Royal Society B:*Biological Sciences 285: 20180361.
- Ezcurra, M.D., Marke, D., Walsh, S.A. and Brusatte, S.L. 2023. A revision of the 'coelophysoid-grade' theropod specimen from the Lower Jurassic of the Isle of Skye (Scotland). *Scottish Journal of Geology* 59: sjg2023-012.
- Fantasia, A., Föllmi, K.B., Adatte, T., Spangenberg, J.E., Schoene, B., Barker, R.T. and Scasso, R.A. 2021. Late Toarcian continental palaeoenvironmental conditions: An example from the Cañadón Asfalto Formation in southern Argentina. *Gondwana Research* 89: 47–65.
- Fanti, F. and Therrien, F. 2007. Theropod tooth assemblages from the Late Cretaceous
 Maevarano Formation and the possible presence of dromaeosaurids in Madagascar.

 Acta Palaeontologica Polonica 52: 155–166.

- Flannery Sutherland, J.T., Moon, B.C., Stubbs, T.L. and Benton, M.J. 2019. Does exceptional preservation distort our view of disparity in the fossil record? *Proceedings of the Royal Society B: Biological Sciences* 286: 20190091.
- Flynn, J.J., Ranivoharimanana, L., Wyss, A.R. and Goodman, S.M. 2022. Latest Paleozoic to Mesozoic terrestrial vertebrate faunas of Madagascar: biotic history during the breakup of Gondwana. In: Steven M. Goodman (Ed.), *The New Natural History of* Madagascar, Princeton University Press Princeton, pp. 51–59.
- Geiger, M., Clark, D.N. and Mette, W. 2004. Reappraisal of the timing of the breakup of
 Gondwana based on sedimentological and seismic evidence from the Morondava
 Basin, Madagascar. *Journal of African Earth Sciences* 38: 363–381.
- Gerke, O. and Wings, O. 2016. Multivariate and cladistic analyses of isolated teeth reveal
 sympatry of theropod dinosaurs in the Late Jurassic of Northern Germany. *PLOS ONE* 11: e0158334.
- Gianechini, F.A., Makovicky, P.J. and Apesteguía, S. 2011. The teeth of the unenlagiine theropod *Buitreraptor* from the Cretaceous of Patagonia, Argentina, and the unusual dentition of the Gondwanan dromaeosaurids. *Acta Palaeontologica Polonica* 56: 279– 290.
- Gianechini, F.A., Méndez, A.H., Filippi, L.S., Paulina-Carabajal, A., Juárez-Valieri, R.D. and
 Garrido, A.C. 2021. A new furileusaurian abelisaurid from La Invernada (Upper
 Cretaceous, Santonian, Bajo de la Carpa Formation), northern Patagonia, Argentina.
 Journal of Vertebrate Paleontology 40: e1877151.
- Goloboff, P.A. and Catalano, S.A. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. *Cladistics* 32: 221–238.
 - Grillo, O.N. and Delcourt, R. 2017. Allometry and body length of abeliasuroid theropods: *Pycnonemosaurus nevesi* is the new king. *Cretaceous Research* 69: 71–89.
- Hao, M., Li, Z., Wang, Z., Wang, S., Ma, F., Qing, G., King, J.L., Pei, R., Zhao, Q. and Xu,
 X. 2025. A new oviraptorosaur from the Lower Cretaceous Miaogou Formation of
 western Inner Mongolia, China. Cretaceous Research 167: 106023.
- Hastie, T., Tibshirani ,Robert and Buja, A. 1994. Flexible Discriminant Analysis by Optimal Scoring. *Journal of the American Statistical Association* 89: 1255–1270.
 - Hendrickx, C. and Mateus, O. 2014. Abelisauridae (Dinosauria: Theropoda) from the Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. *Zootaxa* 3759: 1–74.
- Hendrickx, C. and Carrano, M.T. 2016. Erratum on 'An overview of non-avian theropod
 discoveries and classification'. *PalArch's Journal of Vertebrate Palaeontology* 13: 1–
 7.
- Hendrickx, C., Hartman, S.A. and Mateus, O. 2015a. An overview of non-avian theropod discoveries and classification. *PalArch's Journal of Vertebrate Palaeontology* 12: 1–1641 73.
- Hendrickx, C., Mateus, O. and Araújo, R. 2015b. A proposed terminology of theropod teeth (Dinosauria, Saurischia). *Journal of Vertebrate Paleontology* 35: e982797.
- Hendrickx, C., Tschopp, E. and Ezcurra, M.D. 2020a. Taxonomic identification of isolated theropod teeth: The case of the shed tooth crown associated with *Aerosteon* (Theropoda: Megaraptora) and the dentition of Abelisauridae. *Cretaceous Research* 108: 104312.
- Hendrickx, C., Mateus, O., Araújo, R. and Choiniere, J. 2019. The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. *Palaeontologia Electronica* 22: 1–110.
- Hendrickx, C., Cerroni, M.A., Agnolín, F.L., Catalano, S., Ribeiro, C.F. and Delcourt, R. 2024. Osteology, relationship, and feeding ecology of the theropod dinosaur

1633

1634

- Noasaurus leali Bonaparte and Powell, 1980, from the Late Cretaceous of North-Western Argentina. Zoological Journal of the Linnean Society 202: zlae150.
- Hendrickx, C., Stiegler, J., Currie, P.J., Han, F., Xu, X., Choiniere, J.N. and Wu, X.-C. 2020b.
 Dental anatomy of the apex predator *Sinraptor dongi* (Theropoda: Allosauroidea)
 from the Late Jurassic of China. *Canadian Journal of Earth Sciences* 57: 1127–1147.
- Hendrickx, C., Trapman, T.H., Wills, S., Holwerda, F.M., Stein, K.H.W., Rauhut, O.W.M.,
 Melzer, R.R., Woensel, J.V. and Reumer, J.W.F. 2023. A combined approach to
 identify isolated theropod teeth from the Cenomanian Kem Kem Group of Morocco:
 cladistic, discriminant, and machine learning analyses. *Journal of Vertebrate Paleontology* 43: e2311791.
- Hislop, S. 1861. Remarks on the geology of Nágpur. *Journal of the Bombay Branch of the Royal Asiatic Society* 6: 194–206.
 - Holtz, T.R. 2021. Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica1. *Canadian Journal of Earth Sciences* 58: 778–795.
 - Howgate, M.E. 1984. The teeth of *Archaeopteryx* and a reinterpretation of the Eichstätt specimen. *Zoological Journal of the Linnean Society* 82: 159–175.
- Huene, F.R. von 1929. Los saurisquios y ornithisquios de Cretaceo Argentine. *Annales de Museo de La Plata* 3: 1–196.
- Ibiricu, L.M., Baiano, M.A., Martínez, R.D., Alvarez, B.N., Lamanna, M.C. and Casal, G.A.
 2021. A detailed osteological description of *Xenotarsosaurus bonapartei* (Theropoda: Abelisauridae): implications for abelisauroid phylogeny. *Cretaceous Research* 124: 104829.
- Ibrahim, N., Sereno, P.C., Varricchio, D.J., Martill, D.M., Dutheil, D.B., Unwin, D.M.,
 Baidder, L., Larsson, H.C.E., Zouhri, S. and Kaoukaya, A. 2020. Geology and
 paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. *ZooKeys* 928: 1–216.
- Isasmendi, E., Torices, A., Canudo, J.I., Currie, P.J. and Pereda-Suberbiola, X. 2022. Upper
 Cretaceous European theropod palaeobiodiversity, palaeobiogeography and the intraMaastrichtian faunal turnover: new contributions from the Iberian fossil site of Laño.

 Papers in Palaeontology 8: e1419.
- Isasmendi, E., Pérez-Pueyo, M., Moreno-Azanza, M., Alonso, A., Puértolas-Pascual, E., Bádenas, B. and Canudo, J.I. 2024. Theropod teeth palaeodiversity from the uppermost Cretaceous of the South Pyrenean Basin (NE Iberia) and the intra-Maastrichtian faunal turnover. *Cretaceous Research* 162: 105952.
- Juarez, M., Hechenleitner, E.M., Martinelli, A.G., Rocher, S. and Fiorelli, L.E. 2023. First record of abelisaurid theropods and a peirosaurid crocodyliform from the Upper Cretaceous of Precordillera of La Rioja, NW Argentina. *Cretaceous Research* 152: 105679.
- Kellermann, M., Cuesta, E. and Rauhut, O.W.M. 2025. Re-evaluation of the Bahariya Formation carcharodontosaurid (Dinosauria: Theropoda) and its implications for allosauroid phylogeny. *PLOS ONE* 20: e0311096.
- Khosla, A. and Lucas, S.G. 2023. Review of the Cretaceous dinosaurs from India and their paleobiogeographic significance. *Acta Geologica Polonica* 73: 707–740.
- Kobayashi, Y., Zelenitsky, D.K., Fiorillo, A.R. and Chinzorig, T. 2025. Didactyl therizinosaur with a preserved keratinous claw from the Late Cretaceous of Mongolia. *iScience* 28.
- Krause, D.W., Sampson, S.D., Carrano, M.T. and O'Connor, P.M. 2007. Overview of the history of fiscovery, taxonomy, phylogeny, and biogeography of *Majungasaurus* crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. *Journal of Vertebrate Paleontology* 27: 1–20.

1667

1668

- Kubo, K., Kobayashi, Y., Chinzorig, T. and Tsogtbaatar, K. 2023. A new alvarezsaurid
 dinosaur (Theropoda, Alvarezsauria) from the Upper Cretaceous Baruungoyot
 Formation of Mongolia provides insights for bird-like sleeping behavior in non-avian
 dinosaurs. *PLOS ONE* 18: e0293801.
- 1707 Kubota, K., Kobayashi, Y. and Ikeda, T. 2024. Early Cretaceous troodontine troodontid
 1708 (Dinosauria: Theropoda) from the Ohyamashimo Formation of Japan reveals the early
 1709 evolution of Troodontinae. *Scientific Reports* 14: 16392.
- Kuhn, M. 2008. Building Predictive Models in R Using the caret Package. *Journal of Statistical Software* 28: 1–26.
- Kursa, M.B. and Rudnicki, W.R. 2010. Feature Selection with the Boruta Package. *Journal of Statistical Software* 36: 1–13.
- 1714 Laurin, M. 2004. The evolution of body size, Cope's rule and the origin of amniotes.

 1715 *Systematic Biology* 53: 594–622.
- Le Loeuff, J. and Buffetaut, E. 1991. *Tarascosaurus salluvicus* nov. gen., nov. sp.,dinosaure théropode du Crétacé supérieur du Sud de la France. *Geobios* 24: 585–594.
- Lehmann, O.E.R., Ezcurra, M.D., Butler, R.J. and Lloyd, G.T. 2019. Biases with the
 Generalized Euclidean Distance measure in disparity analyses with high levels of
 missing data. *Palaeontology* 62: 837–849.
- Leidy, J. 1856. Notice of remains of extinct reptiles and fishes, discovered by Dr. F.V.
 Hayden in the Bad Lands of the Judith River, Nebraska Territory. *Proceedings of the Academy of Natural Sciences of Philadelphia* 8: 72–73.
- 1724 Lhuyd, E. 1699. Lithophylacii Britannici ichnographia. E Typographeo Clarendoniano, .
- Liaw, A. and Wiener, M. 2002. Classification and regression by randomForest. *R News* 2: 18–1726 22.
- 1727 Lloyd, G.T. 2016. Estimating morphological diversity and tempo with discrete character-1728 taxon matrices: implementation, challenges, progress, and future directions. *Biological* 1729 *Journal of the Linnean Society* 118: 131–151.
- Longrich, N.R., Pereda-Suberbiola, X., Jalil, N.-E., Khaldoune, F. and Jourani, E. 2017. An abelisaurid from the latest Cretaceous (late Maastrichtian) of Morocco, North Africa.

 Cretaceous Research 76: 40–52.
- Lydekker, R. 1879. Indian Pretertiary Vertebrata. 3. Fossil Reptilia and Batrachia. *Memoirs of the Geological Survey of India: Palaeontologia Indica* 4: 1–35.
- Lydekker, R. 1885. Indian Pretertiary Vertebrata. Vol I. Part 5. The Reptilia & Amphibia of
 the Maleri and Denwa Groups. *Memoirs of the Geological Survey of India: Palaeontologia Indica* 1–38.
- Lydekker, R. 1890. Note on certain vertebrate remains from the Nagpur district. *Records of the Geological Survey of India* 23: 20–24.
- 1740 Lydekker, R. 1893. The dinosaurs of Patagonia. *Anales Museo de La Plata* 2: 1–14.
- Madsen, J.H. 1976. A second new theropod dinosaur from the Late Jurassic of east central Utah. *Utah Geology* 3: 51–60.
- Maganuco, S., Cau, A. and Pasini, G. 2005. First description of theropod remains from the
 Middle Jurassic (Bathonian) of Madagascar. Atti Della Società Italiana Di Scienze
 Naturali e Del Museo Civico Di Storia Naturale Di Milano 146: 165–202.
- Maganuco, S., Cau, A., Dal Sasso, C. and Pasini, G. 2007. Evidence of large theropods from the Middle Jurassic of the Mahajanga Basin, NW Madagascar, with implications for ceratosaurian pedal ungual evolution. *Atti Della Società Italiana Di Scienze Naturali e Del Museo Civico Di Storia Naturale Di Milano* 148: 261–271.
- Mahler, L. 2005. Record of Abelisauridae (Dinosauria: Theropoda) from the Cenomanian of Morocco. *Journal of Vertebrate Paleontology* 25: 236–239.

- Malafaia, E., Escaso, F., Coria, R.A., Pérez-García, A. and Ortega, F. 2025. Theropod teeth from the Upper Cretaceous of central Spain: Assessing the paleobiogeographic history of European abelisaurids. *Cretaceous Research* 168: 106072.
- Malafaia, E., Escaso, F., Mocho, P., Serrano-Martínez, A., Torices, A., Cachão, M. and
 Ortega, F. 2017. Analysis of diversity, stratigraphic and geographical distribution of
 isolated theropod teeth from the Upper Jurassic of the Lusitanian Basin, Portugal.
 Journal of Iberian Geology 43: 257–291.
- Marquillas, R.A., Del Papa, C. and Sabino, I.F. 2005. Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous–Paleogene), northwestern Argentina. *International Journal of Earth Sciences* 94: 94–113.
- Marsh, A.D. and Rowe, T.B. 2020. A comprehensive anatomical and phylogenetic evaluation of *Dilophosaurus wetherilli* (Dinosauria, Theropoda) with descriptions of new specimens from the Kayenta Formation of northern Arizona. *Journal of Paleontology* 94: 1–103.
- Marsh, O.C. 1881. Principal characters of American Jurassic dinosaurs. Part V. *American Journal of Science (Series 3)* 21: 417–423.
- Marsh, O.C. 1884. Principal characters of the American Jurassic dinosaurs. Part VIII. The order Theropoda. *American Journal of Science, Series 3* 27: 329–340.
- Meso, J.G., Hendrickx, C., Baiano, M.A., Canale, J.I., Salgado, L. and Martinez, I.D. 2021a.
 Isolated theropod teeth associated with a sauropod skeleton from the Late Cretaceous
 Allen Formation of Río Negro, Patagonia, Argentina. *Acta Palaeontologica Polonica* 66: 409–423.
- Meso, J.G., Juárez Valieri, R.D., Porfiri, J.D., Correa, S.A.S., Martinelli, A.G., Casal, G.A.,
 Canudo, J.I., Poblete, F. and Dos Santos, D. 2021b. Testing the persistence of
 Carcharodontosauridae (Theropoda) in the Upper Cretaceous of Patagonia based on
 dental evidence. *Cretaceous Research* 125: 104875.
- Meso, J.G., Gianechini, F., Gomez, K.L., Muci, L., Baiano, M.A., Pol, D., Kaluza, J., Garrido,
 A. and Pittman, M. 2024. Shed teeth from Portezuelo formation at Sierra del
 Portezuelo reveal a higher diversity of predator theropods during Turonian-Coniacian
 times in northern Patagonia. *BMC Ecology and Evolution* 24: 59.
- Meyer, H. v. 1861. Archaeopteryx litographica (Vogel-Feder) und Pterodactylus von
 Solenhofen. Neues Jahrbuch Für Mineralogie, Geognosie, Geologie Und Petrefakten Kunde 1861: 678–679.
- Moro, D., Damke, L.V.S., Müller, R.T., Kerber, L. and Pretto, F.A. 2024. An unusually robust specimen attributed to *Buriolestes schultzi* (Dinosauria: Sauropodomorpha) from the Late Triassic of southern Brazil. *The Anatomical Record* 307: 1025–1059.
- Motta, M.J. and Novas, F.E. 2025. Osteology of *Austroraptor cabazai* (Paraves: Theropoda): a southern gigantic unenlagiid from the Late Cretaceous of Patagonia. *Historical Biology* 0: 1–123.
- Nesbitt, S.J. and Sues, H.-D. 2020. The osteology of the early-diverging dinosaur

 Daemonosaurus chauliodus (Archosauria: Dinosauria) from the Coelophysis Quarry

 (Triassic: Rhaetian) of New Mexico and its relationships to other early dinosaurs.

 Zoological Journal of the Linnean Society.
- Nixon, K.C. 2002. WinClada, version 1.00.08. *Published by the Author, Ithaca, New York*.
- Novas, F.E. 2009. *The Age of Dinosaurs in South America*, First edition. Indiana University Press, Bloomington, .
- Novas, F.E. and Agnolin, F. 2004. *Unquillosaurus ceibali* Powell, a giant maniraptoran
 (Dinosauria, Theropoda) from the Late Cretaceous of Argentina. *Revista Del Museo* Argentino de Ciencias Naturales Nueva Serie 6: 61–66.

- Novas, F.E., Agnolín, F.L. and Bandyopadhyay, S. 2004. Cretaceous theropods from India: a review of specimens described by Huene and Matley (1933). *Revista Del Museo Argentino de Ciencias Naturales, Ns* 6: 67–103.
- Novas, F.E., Valais, S., Vickers-Rich, P. and Rich, T. 2005. A large Cretaceous theropod
 from Patagonia, Argentina, and the evolution of carcharodontosaurids.
 Naturwissenschaften 92: 226–230.
- Novas, F.E., Chatterjee, S., Rudra, D.K. and Datta, P.M. 2010. *Rahiolisaurus gujaratensis*, n. gen. n. sp., a new abelisaurid theropod from the Late Cretaceous of India. In:

 Bandyopadhyay, S. (Ed.), *New Aspects of Mesozoic Biodiversity*, Springer Berlin

 Heidelberg, Lecture Notes in Earth Sciences. pp. 45–62.
- Novas, F.E., Agnolín, F.L., Ezcurra, M.D., Porfiri, J. and Canale, J.I. 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia.

 Cretaceous Research 45: 174–215.
- Olmedo-Romaña, G.J., Wilson Mantilla, J.A., Tejada, J.V., Antoine, P.-O., Burga-Castillo,
 M.A., Aliaga-Castillo, A.V., Varas-Malca, R., Benites-Palomino, A. and SalasGismondi, R. 2025. Theropod and sauropod dinosaurs from the Campanian—
 Maastrichtian Bagua Basin of Perú, including the first possible report of Spinosauridae in western South America. *Ameghiniana*.
- 7819 Ösi, A., Apesteguía, S. and Kowalewski, M. 2010. Non-avian theropod dinosaurs from the early Late Cretaceous of central Europe. *Cretaceous Research* 31: 304–320.
- Owen, R. 1842. Report on British fossil reptiles. *Report of the British Association for the Advancement of Science* 11: 60–294.
- Paul, G.S. 2002. *Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds*. Johns Hopkins University Press, Baltimore, .
- Pereyra, E.E.S., Pérez, D.E. and Méndez, A.H. 2025. Macroevolutionary trends in Ceratosauria body size: insights of phylogenetic comparative methods. *BMC Ecology* and Evolution 25: 32.
- Pérez-García, A., Ortega, F., Bolet, A., Escaso, F., Houssaye, A., Martínez-Salanova, J., de Miguel Chaves, C., Mocho, P., Narváez, I., Segura, M., Torices, A., Vidal, D. and Sanz, J.L. 2016. A review of the upper Campanian vertebrate site of Armuña (Segovia Province, Spain). *Cretaceous Research* 57: 591–623.
 - Pinheiro-Silva, L., Gianuca, A.T., Silveira, M.H. and Petrucio, M.M. 2020. Grazing efficiency asymmetry drives zooplankton top-down control on phytoplankton in a subtropical lake dominated by non-toxic cyanobacteria. *Hydrobiologia* 847: 2307–2320.
- Plot, R. 1677. *The Natural History of Oxfordshire, Being an Essay Toward the Natural History of England.* Printed at the Theater, Oxford, .
- Pol, D. and Rauhut, O.W.M. 2012. A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs. *Proceedings of the Royal Society B:*Biological Sciences 279: 3170–3175.
- Pol, D., Baiano, M.A., Černý, D., Novas, F.E., Cerda, I.A. and Pittman, M. 2024. A new abelisaurid dinosaur from the end Cretaceous of Patagonia and evolutionary rates among the Ceratosauria. *Cladistics* 40: 307–356.
- Powell, J.E. 1979. Sobre una asociación de dinosaurios y otras evidencias de vertebrados del Cretácico Superior de la región de La Candelaria, Prov. de Salta, Argentina.

 Ameghiniana 16: 191–204.
- Powell, J.E. 1992. Osteologia de Saltasaurus loricatus (Sauropoda Titanosauridae) del
 Cretácico Superior del noroeste Argentino. In: Sanz, J.L. and A.D. Buscalioni (Eds.) ,
 Los Dinosaurios y Su Entorno Biotico: Actas del Segundo Curso de Paleontologia in
- 1849 Cuenca. Institutio 'Juan de Valdes', Cuenca, Argentina, pp. 165–230.

- Powell, J.E. 2003. Revision of South American Titanosaurid Dinosaurs: Palaeobiological,
 Palaeobiogeographical and Phylogenetic Aspects. Queen Victoria Museum and Art
 Gallery, .
- Pradelli, L.A., Pol, D. and Ezcurra, M.D. 2025. The appendicular osteology of the Early

 Jurassic theropod *Piatnitzkysaurus floresi* and its implications on the morphological

 disparity of non-coelurosaurian tetanurans. *Zoological Journal of the Linnean Society*203: zlae176.
- Prasad, G.V.R. and Parmar, V. 2022. Cretaceous insular India Consequences for biological evolution and faunal interchanges. *Journal of the Palaeontological Society of India* 67: 56–71.
- Prasad G.V.R., Verma V., Grover P., Priyadarshini R., Sahni A. and Lourembam R.S. 2016.
 Isolated Archosaur teeth from the green sandstone capping the Coralline Limestone
 (Bagh Group) of the Narmada valley: Evidence for the presence of pre-Late to Late
 Maastrichtian abelisaurids in India. *Island Arc* 25: 410–420.
- Price, L.I. 1960. Dentes de Theropoda num testemunho de sonda no estado do Amazonas. *Anais Da Academia Brasileira de Ciências* 32: 79–84.
- Quinlan, J.R. 1993. C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann, .
- Ratsimbaholison, N.O., Felice, R.N. and O'Connor, P.M. 2016. Ontogenetic changes in the craniomandibular skeleton of the abelisaurid dinosaur *Majungasaurus crenatissimus* from the Late Cretaceous of Madagascar. *Acta Palaeontologica Polonica* 61: 281–292.
 - Rauhut, O.W.M. 2004. Provenance and anatomy of *Genyodectes serus*, a large-toothed ceratosaur (Dinosauria: Theropoda) from Patagonia. *Journal of Vertebrate Paleontology* 24: 894–902.
- 1874 Rauhut, O.W.M. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania).

 1875 Special Papers in Palaeontology 86: 195–239.
 - Rauhut, O.W.M. and Pol, D. 2019. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. *Scientific Reports* 9: 1–9.
- 1879 Rauhut, O.W.M. and Pol, D. 2021. New theropod remains from the Late Jurassic Cañadón
 1880 Calcáreo formation of Chubut, Argentina. *Journal of South American Earth Sciences*1881 111: 103434.
- Rauhut, O.W.M., Foth, C. and Tischlinger, H. 2018. The oldest *Archaeopteryx* (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. *PeerJ* 6: e4191.
- Revell, L.J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). *Methods in Ecology and Evolution* 3: 217–223.
- Ribeiro, T.B., Brito, P.M.M. and Gomes da Costa Pereira, P.V.L. 2023. The predominance of teeth in the non-avian dinosaur record from Cretaceous Brazil: a review. *Historical Biology* 0: 1–16.
- Ribeiro, T.B., Albuquerque, A.S., Bragança, T. and Pereira, P.V.L.G.C. 2024a. A lost tooth in the jungle: revisiting the sole dinosaurian record from northern Brazil. *Anais Da Academia Brasileira de Ciências* 96: e20231180.
- Ribeiro, T.B., da Costa Pereira, P.V.L.G., Brusatte, S.L., dos Anjos Candeiro, C.R. and
 Bergqvist, L.P. 2022. An eye for an eye, a tooth for a tooth: Archosaurian teeth from
 the Açu Formation (Albian–Cenomanian), Potiguar Basin, Northeast Brazil.

 Cretaceous Research 129: 105005.
- Ribeiro, T.B., Cupello, C., de Mayrink, D., da Costa Pereira, P.V.L.G. and Brito, P.M. 2025.

 A theropod tooth from the Missão Velha Formation (Late Jurassic-Early Cretaceous)

1872

1873

1876 1877

- of the Araripe Basin: oldest Brazilian Abelisaurid record. *Historical Biology* 37: 827–837.
- Ribeiro, T.B., Vecchietti, L.F., Candeiro, C.R.A., Canale, J.I., Bergqvist, L.P., Brito, P.M. and
 Pereira, P.V.L.G.C. 2024b. Overabundance of abelisaurid teeth in the Açu Formation
 (Albian-Cenomanian), Potiguar Basin, Northeastern Brazil: morphometric, cladistic
 and machine learning approaches. *Journal of Vertebrate Paleontology* 44: e2487366.
- 1905 Rogers, R.R., Krause, D.W., Rogers, K.C., Rasoamiaramanana, A.H. and Rahantarisoa, L.
 1906 2007. Paleoenvironment and paleoecology of *Majungasaurus crenatissimus*1907 (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. *Journal of*1908 *Vertebrate Paleontology* 27: 21–31.
- Salem, B.S., Lamanna, M.C., O'Connor, P.M., El-Qot, G.M., Shaker, F., Thabet, W.A., El-Sayed, S. and Sallam, H.M. 2022. First definitive record of Abelisauridae (Theropoda: Ceratosauria) from the Cretaceous Bahariya Formation, Bahariya Oasis, Western
 Desert of Egypt. *Royal Society Open Science* 9: 220106.
- Sales, M.A.F., Oliveira, I.A.P. de and Schultz, C.L. 2018. The oldest abelisaurid record from
 Brazil and the palaeobiogeographic significance of mid-Cretaceous dinosaur
 assemblages from northern South America. *Palaeogeography, Palaeoclimatology,*Palaeoecology 508: 107–115.
- Sampson, S.D. and Witmer, L.M. 2007. Craniofacial anatomy of *Majungasaurus* crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar.
 Journal of Vertebrate Paleontology 27: 32–104.
- Sampson, S.D., Witmer, L.M., Forster, C.A., Krause, D.W., O'Connor, P.M., Dodson, P. and Ravoavy, F. 1998. Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. *Science* 280: 1048–1051.
- Seeley, H.G. 1881. The Reptile Fauna of the Gosau Formation preserved in the Geological
 Museum of the University of Vienna: With a Note on the Geological Horizon of the
 Fossils at Neue Welt, west of Wiener Neustadt, by Edw. Suess, Ph.D., F.M.G.S., &c.,
 Professor of Geology in the University of Vienna, &c. *Quarterly Journal of the*Geological Society of London 37: 620–706.
- Seeley, H.G. 1883. On the Dinosaurs from the Maastricht Beds. *Quarterly Journal of the Geological Society of London* 39: 246–253.
- 1930 Sereno, P.C. and Brusatte, S.L. 2008. Basal abelisaurid and carcharodontosaurid theropods 1931 from the Lower Cretaceous Elrhaz Formation of Niger. *Acta Palaeontologica* 1932 *Polonica* 53: 15–46.
- Sereno, P.C., Wilson, J.A. and Conrad, J.L. 2004. New dinosaurs link southern landmasses in the Mid–Cretaceous. *Proceedings of the Royal Society of London. Series B: Biological Sciences* 271: 1325–1330.
- Smith, J.B. 2007. Dental morphology and variation in *Majungasaurus crenatissimus* (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. *Journal of Vertebrate Paleontology* 27: 103–126.
- Smith, J.B. and Dodson, P. 2003. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. *Journal of Vertebrate Paleontology* 23: 1–12.
- Smith, J.B. and Dalla Vecchia, F.M. 2006. An abelisaurid (Dinosauria: Theropoda) tooth from the Lower Cretaceous Chicla formation of Libya. *Journal of African Earth Sciences* 46: 240–244.
- Smith, J.B. and Lamanna, M.C. 2006. An abelisaurid from the Late Cretaceous of Egypt: implications for theropod biogeography. *Naturwissenschaften* 93: 242–245.
- Smith, J.B., Vann, D.R. and Dodson, P. 2005. Dental morphology and variation in theropod dinosaurs: Implications for the taxonomic identification of isolated teeth. *The*

- 1949 Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary 1950 Biology 285A: 699–736.
- Soto, M., Toriño, P. and Perea, D. 2020a. A large sized megalosaurid (Theropoda, Tetanurae) from the late Jurassic of Uruguay and Tanzania. *Journal of South American Earth Sciences* 98: 102458.
- Soto, M., Toriño, P. and Perea, D. 2020b. Ceratosaurus (Theropoda, Ceratosauria) teeth from
 the Tacuarembó Formation (Late Jurassic, Uruguay). Journal of South American
 Earth Sciences 103: 102781.
- Soto, M., Delcourt, R., Langer, Max.C. and Perea, D. 2023. The first record of Abelisauridae (Theropoda: Ceratosauria) from Uruguay (Late Jurassic, Tacuarembó Formation).

 Historical Biology 35: 2362–2371.
- de Souza, G.A., Soares, M.B., Weinschütz, L.C., Wilner, E., Lopes, R.T., de Araújo, O.M.O.
 and Kellner, A.W.A. 2021. The first edentulous ceratosaur from South America.
 Scientific Reports 11: 22281.
- Spalding, D.E.A. and Sarjeant, W.A.S. 2012. Dinosaurs: The Earliest Discoveries. In: Brett-Surman, M.K., T.R.J. Holtz and J.O. Farlow (Eds.), *The Complete Dinosaur, Second Edition*, Indiana University Press, Bloomington, Indiana, pp. 3–24.
 - Stekhoven, D.J. and Bühlmann, P. 2012. MissForest—non-parametric missing value imputation for mixed-type data. *Bioinformatics* 28: 112–118.
- Sues, H.-D., Nesbitt, S.J., Berman, D.S. and Henrici, A.C. 2011. A late-surviving basal
 theropod dinosaur from the latest Triassic of North America. *Proceedings of the Royal Society B: Biological Sciences* 278: 3459–3464.
- Therrien, F., Henderson, D.M. and Ruff, C.B. 2005. Bite me: biomechanical models of theropod mandibles and implications for feeding behavior. In: Carpenter, K. (Ed.), *The Carnivorous Dinosaurs*, Indiana University Press, Bloomington, Indiana, pp. 179–237.
- Torices, A., Currie, P.J., Canudo, J.I. and Pereda-Suberbiola, X. 2015. Theropod dinosaurs from the Upper Cretaceous of the South Pyrenees Basin of Spain. *Acta Palaeontologica Polonica* 60: 611–626.
- Tortosa, T., Buffetaut, E., Vialle, N., Dutour, Y., Turini, E. and Cheylan, G. 2014. A new
 abelisaurid dinosaur from the Late Cretaceous of southern France:
 Palaeobiogeographical implications. *Annales de Paléontologie* 100: 63–86.
- Umazano, A.M., Krause, J.M., Bellosi, E.S., Perez, M., Visconti, G. and Melchor, R.N. 2017.
 Changing fluvial styles in volcaniclastic successions: A cretaceous example from the
 Cerro Barcino Formation, Patagonia. *Journal of South American Earth Sciences* 77:
 185–205.
- Varma, S. and Simon, R. 2006. Bias in error estimation when using cross-validation for model selection. *BMC Bioinformatics* 7: 91.
- Vianey-Liaud, M., Jain, S.L. and Sahni, A. 1988. Dinosaur eggshells (Saurischia) from the
 Late Cretaceous Intertrappean and Lameta formations (Deccan, India). *Journal of Vertebrate Paleontology* 7: 408–424.
- Walker, C.A. 1981. New subclass of birds from the Cretaceous of South America. *Nature* 292: 51–53.
- Wang, S., Stiegler, J., Amiot, R., Wang, X., Du, G., Clark, J.M. and Xu, X. 2017. Extreme ontogenetic changes in a ceratosaurian theropod. *Current Biology* 27: 144–148.
- Welles, S.P. 1970. *Dilophosaurus* (Reptilia, Saurischia), a new name for a dinosaur. *Journal* of Paleontology 44: 989.
- Wilson, J.A., Sereno, P.C., Srivastava, S., Bhatt, D.K., Khosla, A. and Sahni, A. 2003. A new abelisaurid (Dinosauria, Theropoda) from the Lameta Formation (Cretaceous,

1998 Maastrichtian) of India. Contributions from the Museum of Paleontology, University 1999 *of Michigan* 31: 1–42. Zaher, H., Pol, D., Navarro, B.A., Delcourt, R. and Carvalho, A.B. 2020. An Early Cretaceous 2000 2001 theropod dinosaur from Brazil sheds light on the cranial evolution of the 2002 Abelisauridae. Comptes Rendus Palevol 19: 101. 2003 Zheng, W., Jin, X., Xie, J. and Du, T. 2024. The first deep-snouted tyrannosaur from Upper Cretaceous Ganzhou City of southeastern China. Scientific Reports 14: 16276. 2004 **FIGURES** 2005 2006 Figure captions Figure 1. Geographic and stratigraphic distribution of the isolated abelisaurid teeth from the 2007 2008 Jurassic of Gondwana. 1, Paleogeographic map of what is now South America, Africa and 2009 India during the Middle Jurassic (170 Mya; map from Ronald Blakey; modified). 2, 2010 Geological map of a portion of the Mahajanga Basin of north-western Madagascar (from 2011 Bindellini and Dal Sasso, 2021); used with permission; modified). The material from the 2012 Sakaraha Formation (in light blue with dark blue dots) comes from several sites marked by 2013 the red asterisks. 3, Paleogeographic map of what is now South America and Africa during 2014 the Late Jurassic (150 Mya; map from Ronald Blakey; modified). 4, Geological map of Uruguay (from Soto et al., 2020b); modified). The material from the Tacuarembó Formation 2015 2016 (in blue) is marked by a red asterisk. 2017 Figure 2. Geographic and stratigraphic distribution of the isolated abelisaurid teeth from the 2018 2019 Cretaceous of Gondwana. 1, Paleogeographic map of what is now South America, Africa and 2020 India during the Late Cretaceous (70 Mya; map from Ronald Blakey; modified). 2, Geological 2021 map of the main Deccan Volcanic Province from Western India (from Prasad and Parmar, 2022 2022; modified). The material from the Lameta Formation (in dark red) is marked by the 2023 black arrow and a red asterisk. 3, Geological map of the Somuncurá-Cañadón Asfalto Basin, 2024 central Chubut Province, Patagonia (from Umazano et al., 2017; modified). The material from 2025 the Bayo Overo Member (with black stripes) of the Cerro Barcino Formation probably comes

from the top right of the geological map. **4,** Geological map of the El Brete site, southern Salta Province, Northern Argentina (from Hendrickx *et al.*, 2024; modified). The material from the Lecho Formation (in dark blue) is marked by a yellow asterisk.

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2026

2027

2028

Figure 3. Results of the cladistic analyses performed on a revised version of Hendrickx *et* al.'s (2024) data matrix focused on the non-avian theropod dentition (148 dental characters scored in 127 saurischians) using a constrained tree and the dental material under study as floating OTUs. All specimens/morphotypes were recovered among ceratosaurs so that the figure is focused on this clade. Results of the cladistic analysis showing the whole theropod trees are available in the supplementary information. 1-2, Strict consensus trees of 1, eight; and 2, 24 most parsimonious trees resulting from a cladistic analysis performed on the data matrix of 32 mesial crown-based characters using the first 1, and 2, second tree topology and all floating taxa. **3-4**, Strict consensus trees of **3**, 1712 and **4**, 371 most parsimonious trees resulting from a cladistic analysis performed on the data matrix of 56 lateral crown-based characters using 3, the second tree topology and all floating taxa; and 4, the first tree topology after the exclusion of PVL 3672 and MACN 18.172. Mada I, II, III, IV, V are the dental morphotypes I, II, III, IV, and V from the Middle Jurassic of Madagascar and Salta I, II, III are the dental morphotypes I, II, and III from the Upper Cretacerous of the Salta Province, Argentina. Black silhouettes by Scott Hartman (Ceratosaurus and Majungasaurus; CC BY-NC-SA 3.0), Tasman Dixon (Masiakasaurus and Spectrovenator; CC0 1.0 and CC BY 4.0, respectively), Jagged Fang Designs (Ekrixinatosaurus; CC0 1.0), and Limusaurus (from Wang et al., 2017, modified).

2048

2049

Figure 4. Results of the machine learning analysis. The first thirteen graphs present the results for the teeth we aimed to classify into specific clades, using various datasets: the

complete dataset (light blue), the complete dataset restricted to large theropods (salmon), the personal dataset (green), and the personal dataset restricted to large theropods (dark blue). The second-to-last graph (bottom center) compares different algorithms across these datasets, showing the macro-accuracy for the best-performing model, such as Random Forests. Note that macro-accuracy remains relatively stable across algorithms. The last graph (bottom right) illustrates the percentage of correct identifications as Abelisauridae, summarizing the top predictions from each algorithm when all teeth sampled are grouped together. Theropod silhouettes by Scott Hartman (CC BY-NC 3.0 and CC BY-NC-SA 3.0).

Figure 5. Dental evolution in Ceratosauria. Dentition-based synapomorphies mapped on three topological trees representing alternative phylogenetic hypotheses of ceratosaur relationships following the topology obtained by 1, Hendrickx *et al.* (2024); 2, Pol *et al.* (2024); and 3, Cau and Paterna (2025). Black circles indicate non-homoplasious changes (synapomorphies or autapomorphies; here restricted to the clade Ceratosauria) whereas white circles show homoplasies. Ceratosaur silhouettes by Julio Francisco Garza Lorenzo (*Dilophosaurus*; CC BY 3.0), Ville-Veikko Sinkkonen (*Limusaurus*; CC BY-NC-SA 3.0), de Souza *et al.* (2021; *Berthasaura*; modified), Tasman Dixon (*Spectrovenator*; CC0 1.0), and Scott Hartman (all others; CC BY-NC-SA 3.0).

Figure 6. Morphological disparity within Abelisauroidea across the Early–Late Cretaceous intervals, including WMPD values. **1,** WMPD based on the mesial dentition matrix; and **2,** WMPD based on the lateral dentition matrix. Skull silhouette of *Majungasaurus* from Sampson and Witmer (2007; modified).

Figure 7. Morphological disparity of Ceratosauria. 1, Morphospace distribution based on the first two PCO axes, and PCO1 vs. PCO3 based on the mesial dentition matrix; and 2, Morphospace distribution based on the first two PCO axes, and PCO1 vs. PCO3 based on the lateral dentition matrix. Filled convex hulls in 1 and 2 represent the two selected time bins: Early Cretaceous (light blue) and Late Cretaceous (light green). Convex hulls delimited by plain and dashed lines in 2 represent early branching abelisaurids (dashed lines) and the two abelisaurid subclades Abelisaurinae from South America (light green) and Majungasaurinae from India, Africa, and Europe (dark green).

Figure 8. Phylomorphospace in Ceratosauria illustrating the relationship between the logarithm of body length and PCo1, based on the reduced consensus tree from Hendrickx *et al.* (2024) with a time-calibrated topology. **1,** Phylomorphospace plotting based on the mesial dentition matrix; and **2,** phylomorphospace plotting based on the lateral dentition matrix.

Figure 9. Isolated abelisaurid teeth from the Bathonian (Middle Jurassic) Sakaraha Formation of the Mahajanga Basin, Madagascar. 1-8, Mesialmost shed tooth crown (MSNM V5778; Morphotype I) in 1, labial; 2, lingual; 3, distal; and 4, mesial views; with close-up on 5, distal; and 6, mesial denticles at mid-crown in lateral view, and 7-8, cross-sectional outlines at 4, the crown-base; and 8, mid-crown. 9-15, Lateral shed tooth crown of an adult individual (MSNM V5779; Morphotype III) in 9, labial; 10, lingual; 11, distal; and 12, mesial views; with close-up on 13, distal; and 14, mesial denticles at mid-crown in lateral view; and 15, cross-sectional outline at the crown-base. 16-22, Lateral shed tooth crown of a possible juvenile individual (MSNM V5799; Morphotype IV) in 15, labial; 17, lingual; 18, distal; and 19, mesial views; with close-up on 20, the distal; and 21, mesial denticles at mid-crown in lateral view; and 22, cross-sectional outline at the crown-base. Abbreviations: cos, concave surface; dca, distal

carina; **hod,** hooked denticle; **las,** labial surface; **lis,** lingual surface; **ids,** interdenticular sulcus; **mca,** mesial carina; **tun,** transverse undulation. Scale bars equal 1 cm (1-4, 9-12), 5 mm (16-19), and 1 mm (5-6, 13-14, 20-21).

Figure 10. Possible isolated abelisaurid tooth (cf. Abelisauridae; MGT-1161) from the Kimmeridgian? (Upper Jurassic) Tacuarembó Formation of Tacuarembó city, Uruguay. 1-8, Lateral shed tooth crown in 1, labial; 2, lingual; 3, mesial; 4, distal, 5, basal; and 6, apical views; with close-up on 7, distal denticles; and 8, enamel surface texture in lateral views. Abbreviations: dca, distal carina; ens, enamel surface texture, hod, hooked denticle; ids, interdenticular sulcus; mca, mesial carina; tun, transverse undulation. Scale bars equal 1 cm (1-6), 5 mm (8), and 1 mm (7).

Figure 11. Probable isolated abelisaurid tooth (cf. Abelisauridae; MACN 18.172;

"Megalosaurus inexpectatus" of del Corro 1966) from the Cenomanian (Upper Cretaceous)

Cerro Barcino Formation of Cerro Barcino, Chubut Province, Patagonia, Argentina. 1-9,

Lateral shed tooth crown in 1, lingual; 2, labial; 3, distal; 4, mesial, 5, basal; and 6, apical

views; with close-up on 7, the distocentral; and 8, mesio-apical denticles; and 9, the enamel

surface texture in lateral views. Abbreviations: **dca**, distal carina; **mca**, mesial carina. Scale

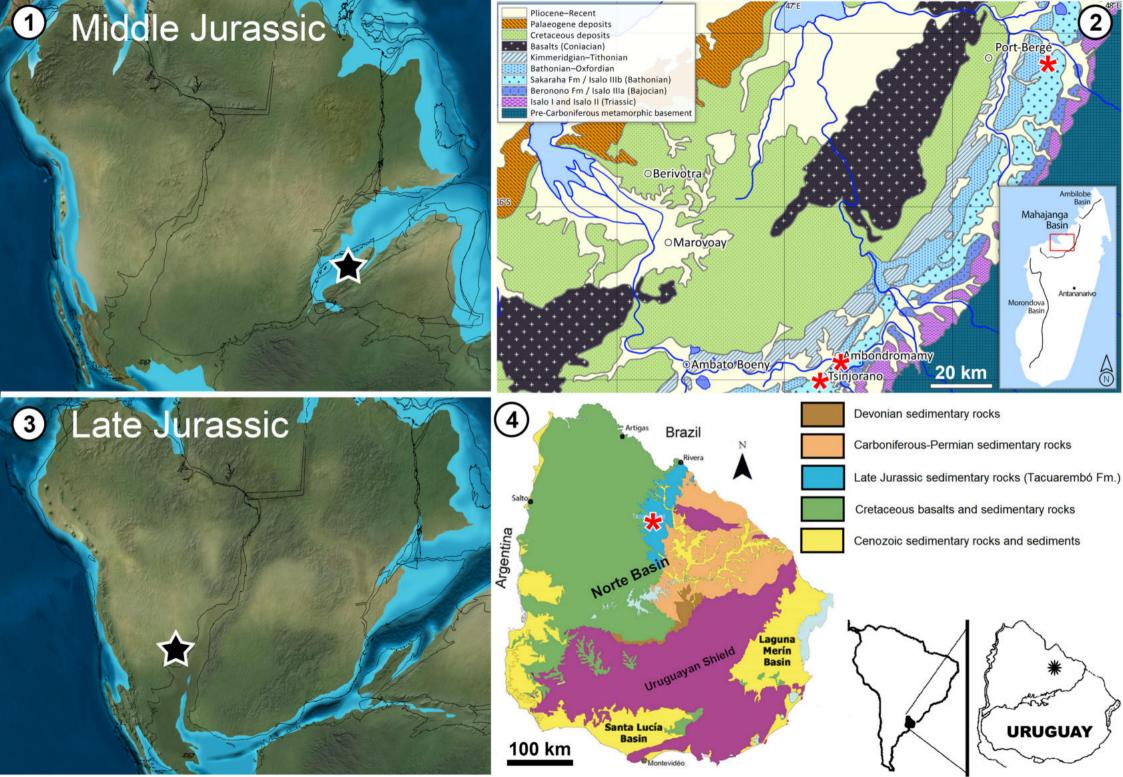
bars equal 1 cm (1-6) and 2 mm (7-9).

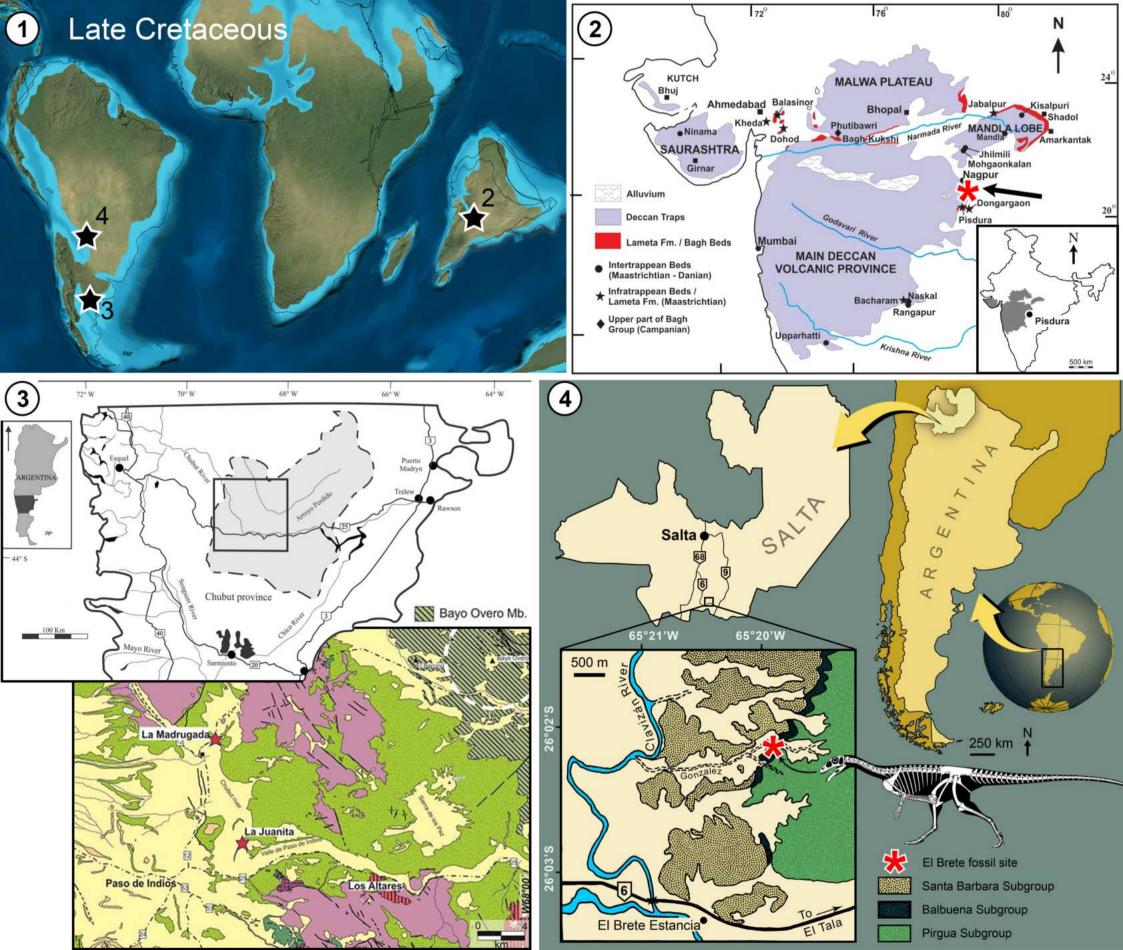
Figure 12. Isolated abelisaurid teeth from the Campanian–Maastrichtian (Upper Cretaceous) Los Blanquitos Formation of La Candelaria, Salta Province, northern Argentina. **1-6**, Lateral shed tooth crown (PVL 4173; Morphotype III) in **1**, labial; **2**, lingual; **3**, distal; **4**, mesial; **5**, apical; and **6**, basal views. **7-10**, Lateral? shed tooth crown (PVL 4174; Morphotype III?) in **7**, labial; **8**, lingual; and **9**, basal views; with close-up on **10**, the mesial denticles at mid-crown

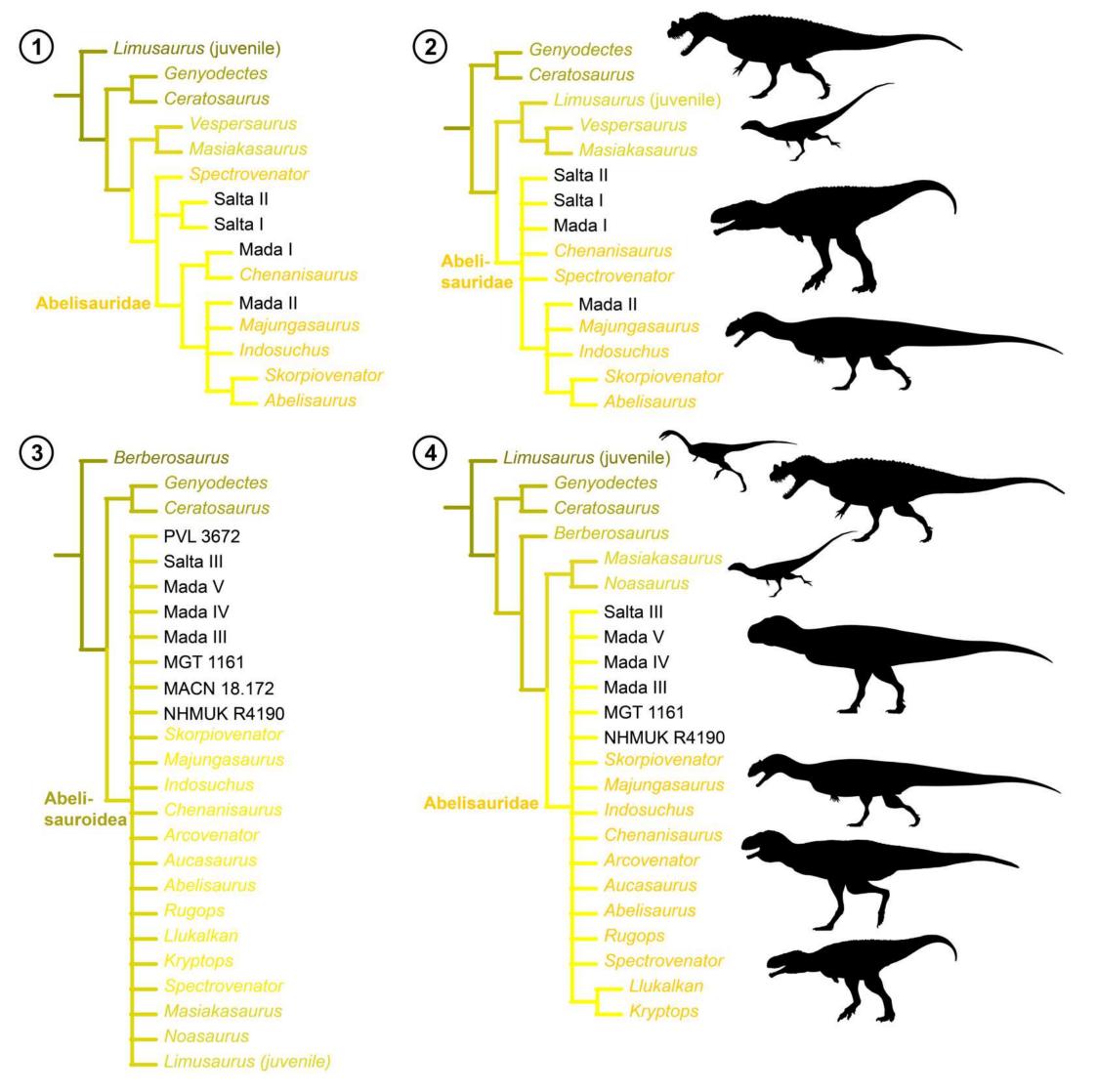
in lateral view. **11-16**, Transitional shed tooth crown (PVL 4175; Morphotype II) in **11**, labial; **12**, lingual; **15**, apical; and **16**, basal views; with close-up on **13**, the distal; and **14**, mesial denticles at mid-crown in lateral view. Abbreviations: **dca**, distal carina; **hod**, hooked denticle; **ids**, interdenticular sulcus; **mca**, mesial carina. Scale bars equal 1 cm (1-6, 7-10, 11-12, 15-16) and 1 mm (9, 13-14).

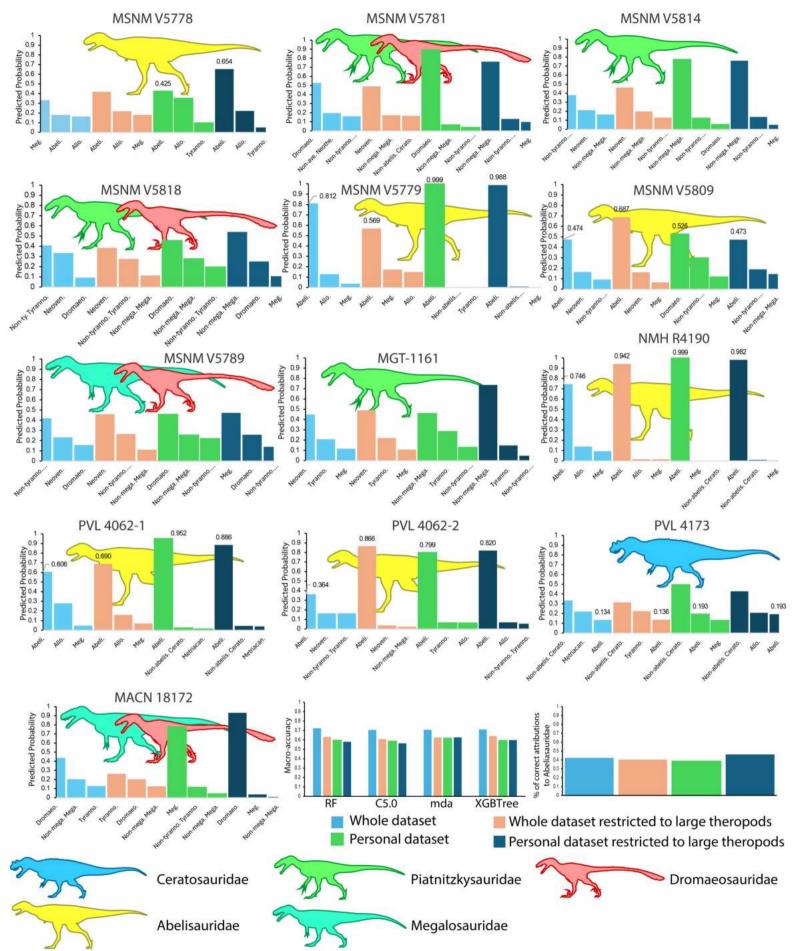
Figure 13. Isolated abelisaurid teeth from the Maastrichtian (Upper Cretaceous) Lecho
Formation of El Brete, Salta Province, northern Argentina. 1-7, Lateral shed tooth crown
(PVL 4062-1; Morphotype III) in 1, lingual; 2, labial; 3, mesial; 4, distal; 5, basal; and 6,
apical views; with close up on 7, distal denticles in lateral view. 8-14, Lateral shed tooth
crown (PVL 4062-2; Morphotype III) in 8, lingual; 10, labial; 11, mesial; 12, distal; 13, basal;
and 14, apical views; with close-up on 9, the enamel surface texture and distocentral denticles
at mid-crown in lateral view. 15-17, Transitional tooth (PVL 4062-4; Morphotype II) in 15,
labial; 16, distal; and 17, apical views. 18-25, Mesialmost shed tooth crown (PVL 4062-5;
Morphotype I) in 18, labial; 19, lingual; 20, mesial; 21, mesial, 24, basal; and 25, apical
views; with close-up on 22, distocentral; and 23, mesiocentral denticles in lateral view.
Abbreviations: dca, distal carina; ids, interdenticular sulcus; mca, mesial carina; mun,
marginal undulation; tun, transverse undulation. Scale bars equal 1 cm (1-6, 8, 10-21, 24-25)
and 1 mm (7, 9, 22-23).

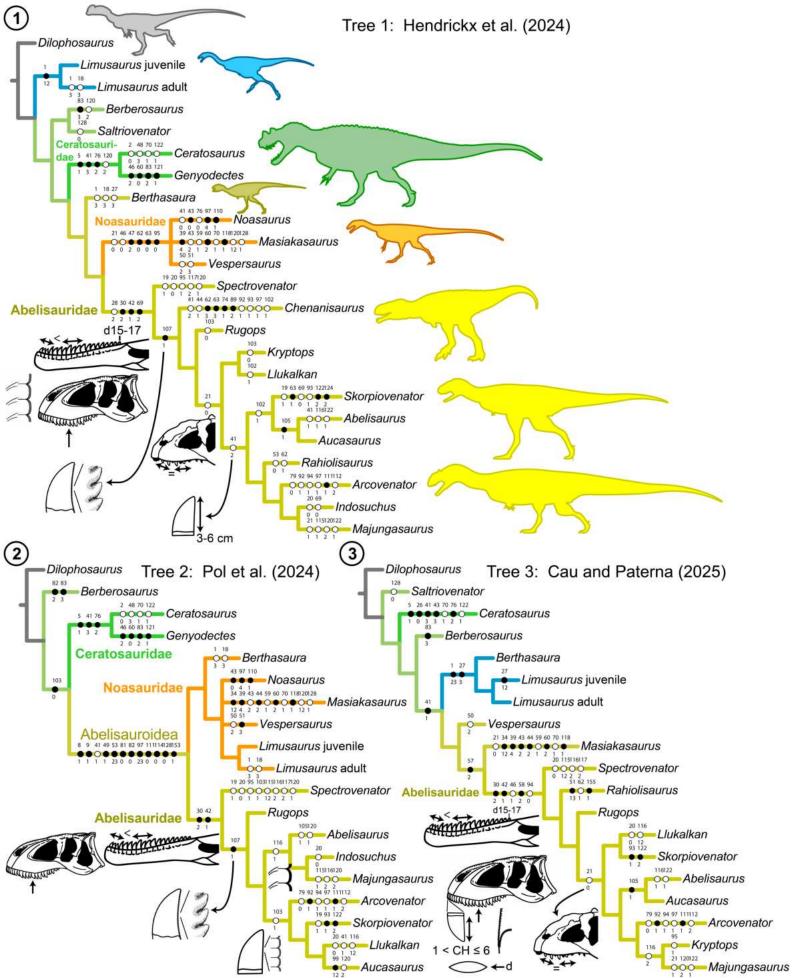
Figure 14. Isolated abeliasurid tooth (PVL 3672) from the Maastrichtian (Upper Cretaceous) Yacoraite Formation of La Candelaria, Salta Province, Northern Argentina. 1-9, lateral shed tooth crown in 1, labial; 2, lingual; 3, mesial; 4, distal, 5, basal; and 6, apical views; with close-up on 7, the mesioapical and, 8, distocentral denticles; and 9, the enamel surface texture

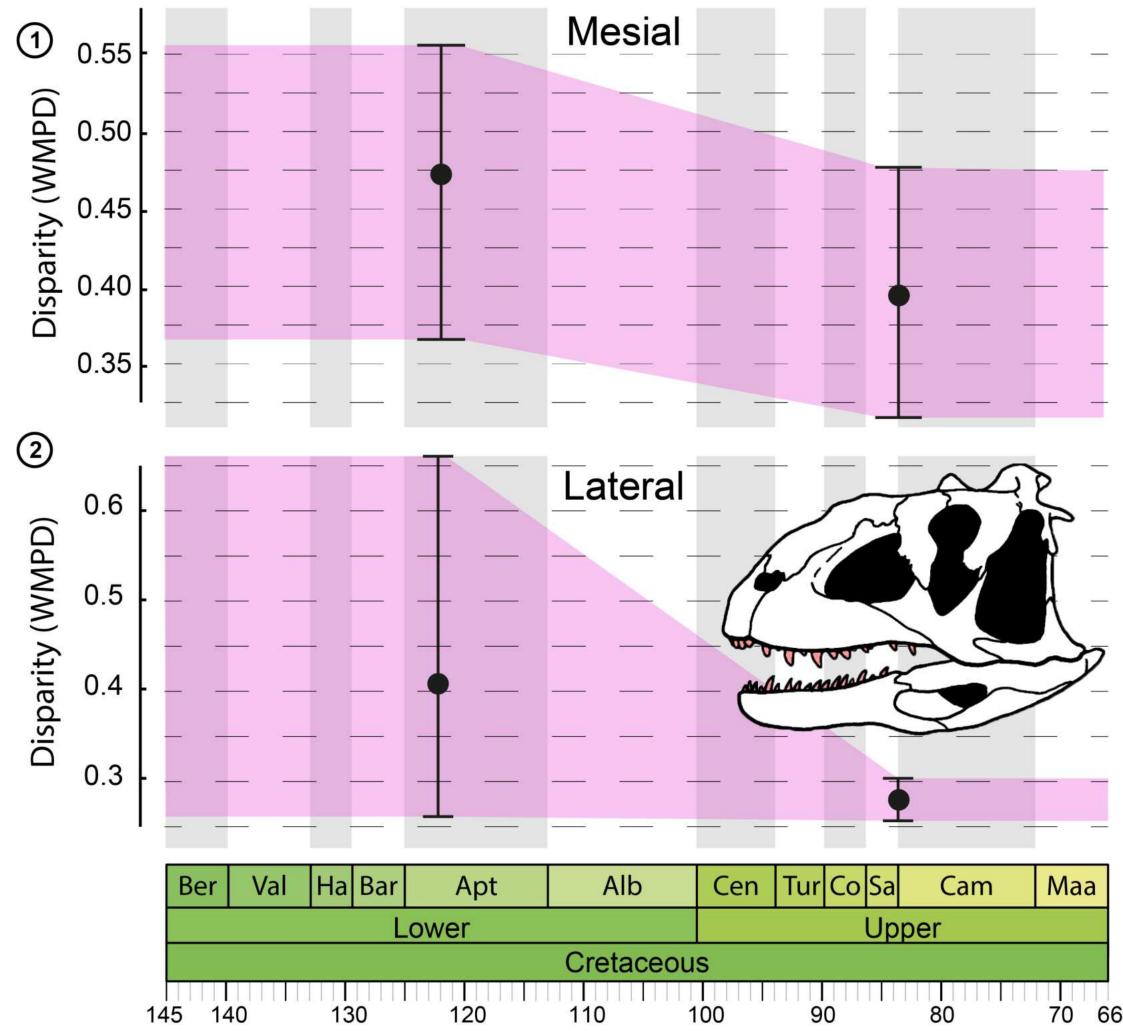

in lateral views. Abbreviations: **hod,** hooked denticle; **mca,** mesial carina. Scale bars equal 1 cm (1-6) and 1 mm (7-9).

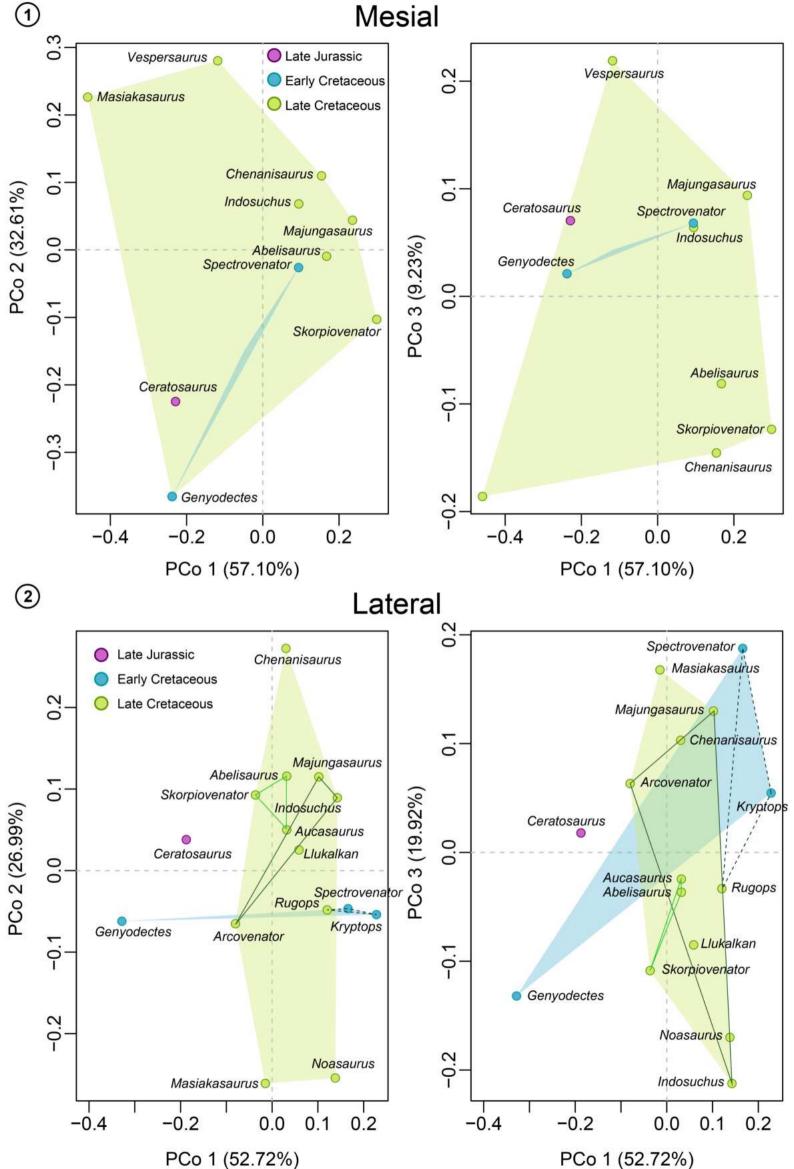

Figure 15. Isolated abelisaurid and possible majungasaurine tooth (NHMUK R4190;

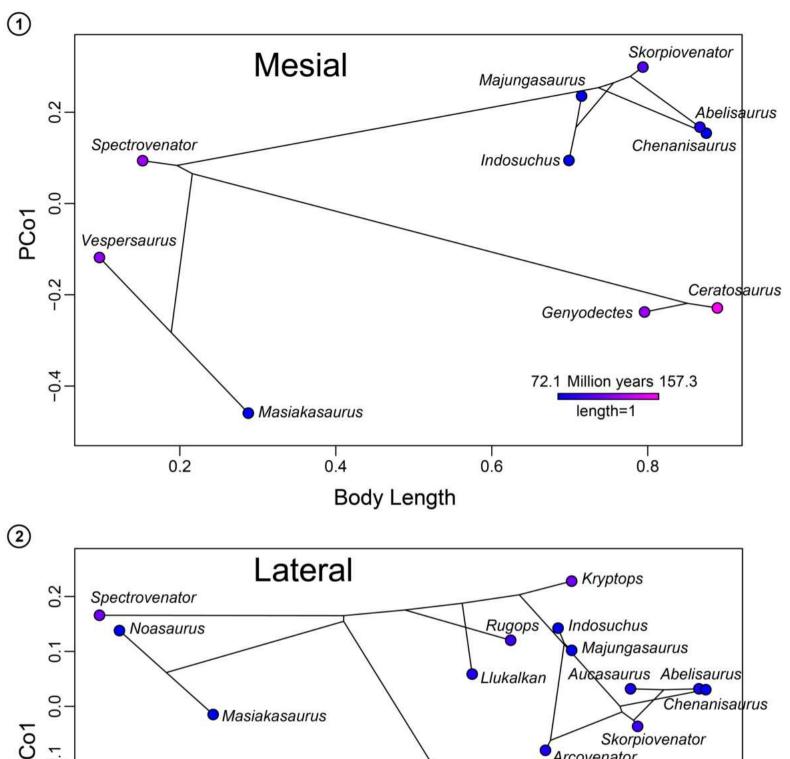

'*Massospondylus rawesi*' of Lydekker, 1890) from the Maastrichtian (Upper Cretaceous) Lameta Formation of Takli, Nagpur area, Maharashtra State, India. **1-9**, Lateral shed tooth crown in **1**, labial; **2**, lingual; **3**, mesial; **4**, distal, **5**, basal; and **6**, apical views; with close-up on **7**, mesial, and **8**, distal denticles at mid-crown; and **9**, enamel surface texture in lateral views. Abbreviation: **mca**, mesial carina. Scale bars equal 1 cm (1-6) and 1 mm (7-9).

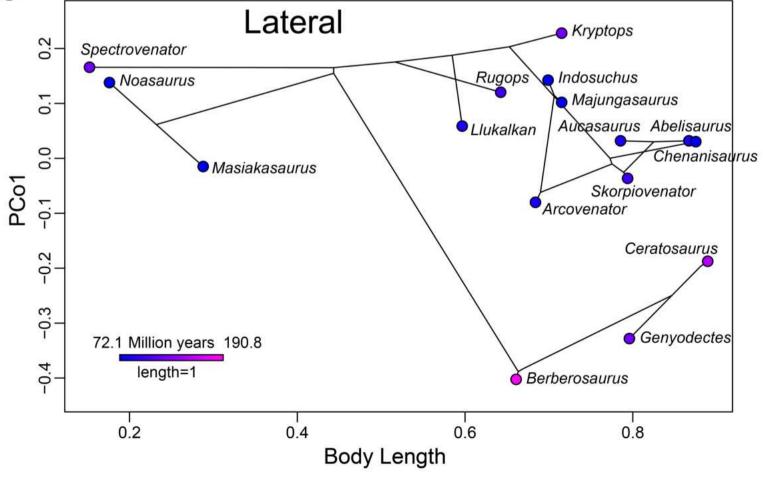

Figure 16. Isolated theropod teeth from early discoveries in Africa, South America, and Europe. 1-4, Two *Majungasaurus* shed tooth crowns referred to *Megalosaurus crenatissimus* by Depéret (1896a) and representing the earliest body fossils of a non-avian theropod published in the literature from Africa; 1-2, are illustrations by Depéret (1896a, plate 6, figs. 4-5) showing the teeth in lateral (4, 5) and basal (4a, 5a) views; and 3-4, are photos of the original teeth (FSL 92.306) by Krause *et al.* (2007: fig. 4A; modified) in lateral view (scale bar equals 1 cm). 5-6, Isolated theropod tooth in lateral view from the Cenomanian Mata Amarilla Formation of Par-Aik, Santa Cruz Province, Argentina, referred to *Loncosaurus argentinus* by Ameghino (1899) and representing the first theropod dental material to be described in the literature in South America; 5, are from Ameghino (1900, p. 160) and Ameghino (1906: fig. 8); and 6, are from Huene (1929, plate 41). 7-8, Isolated theropod tooth from the Campanian Gosau Beds of Muthmannsdorf, Austria, referred by Seeley (1881) as *Megalosaurus pannoniensis* and thought by Buffetaut (2025b) to possibly represent the first abelisaurid remains from Europe; 7, illustration by Seeley (1881) showing the tooth in lateral

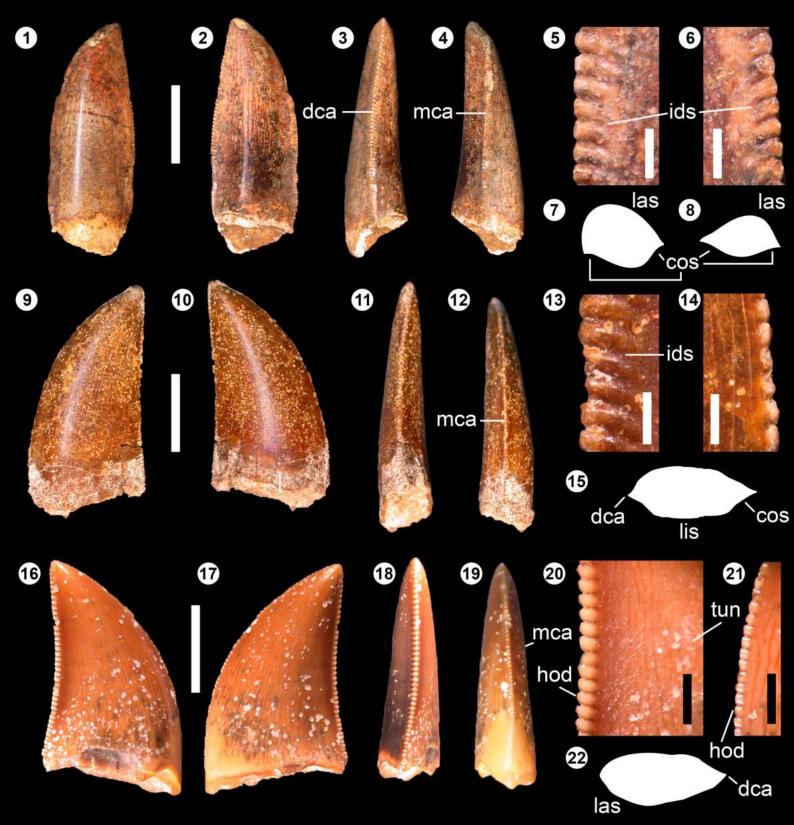

2173	and mesial views; and 8, photo of the original tooth by Ősi et al. (2010: fig. 2A) in lateral
2174	view (scale bar equals 5 mm).
2175	APPENDIX. SUPPLEMENTARY INFORMATION
2176	Supplementary information related to this article includes Appendix 1 with an illustration of
2177	the second and fifth dental morphotypes from Middle Jurassic of Madagascar, the files used in
2178	the phylogenetic and machine learning analyses, and the results of these analyses.

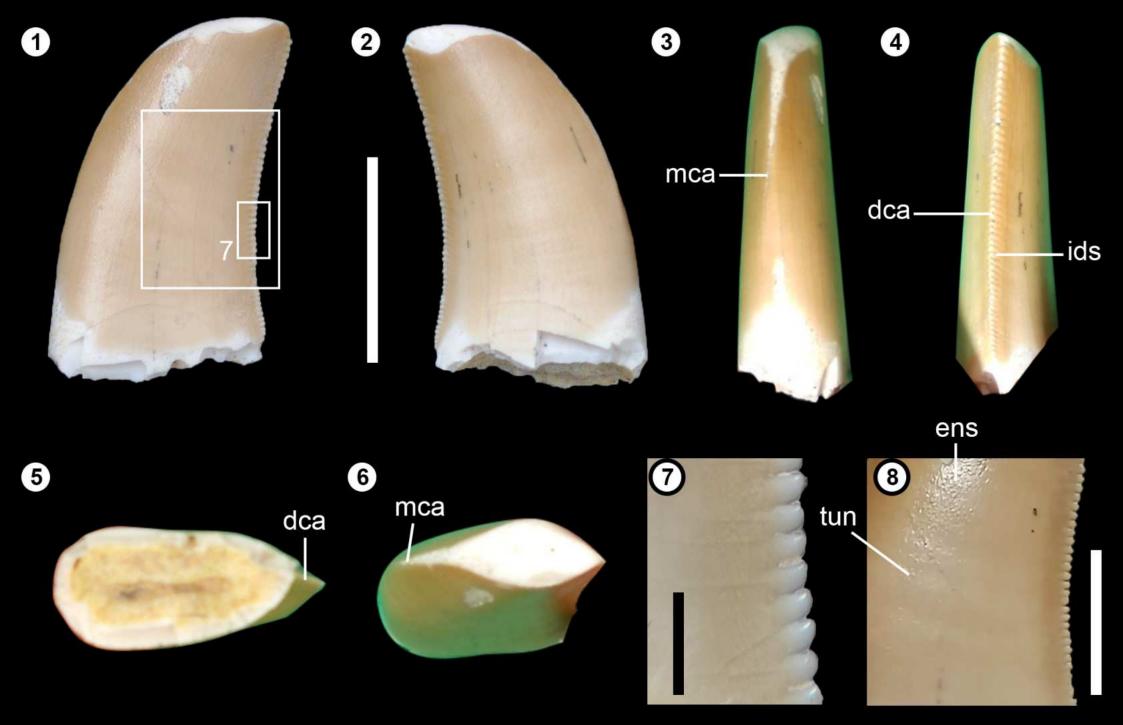


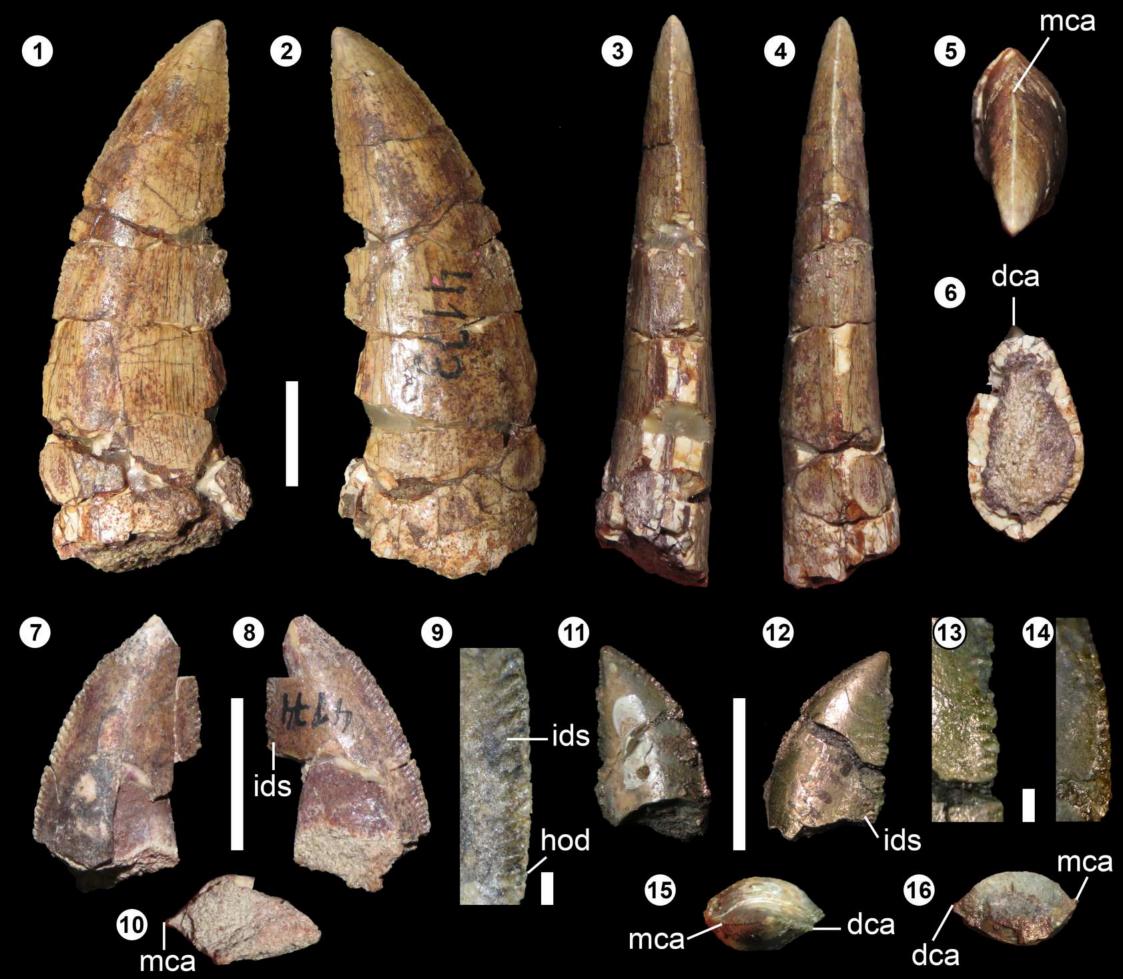


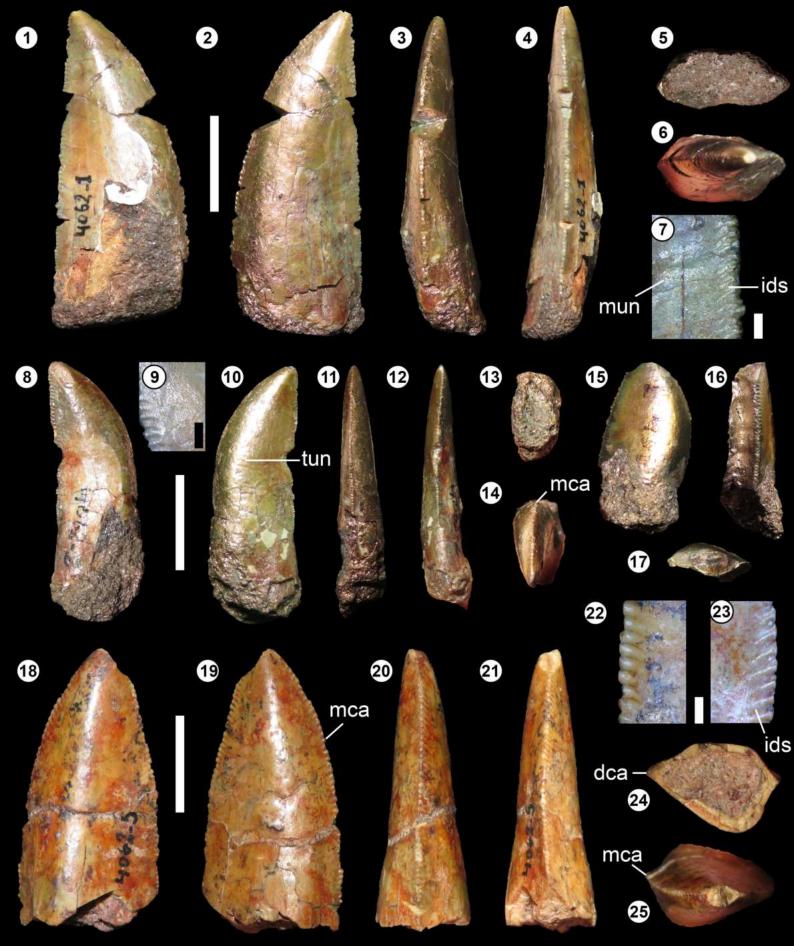


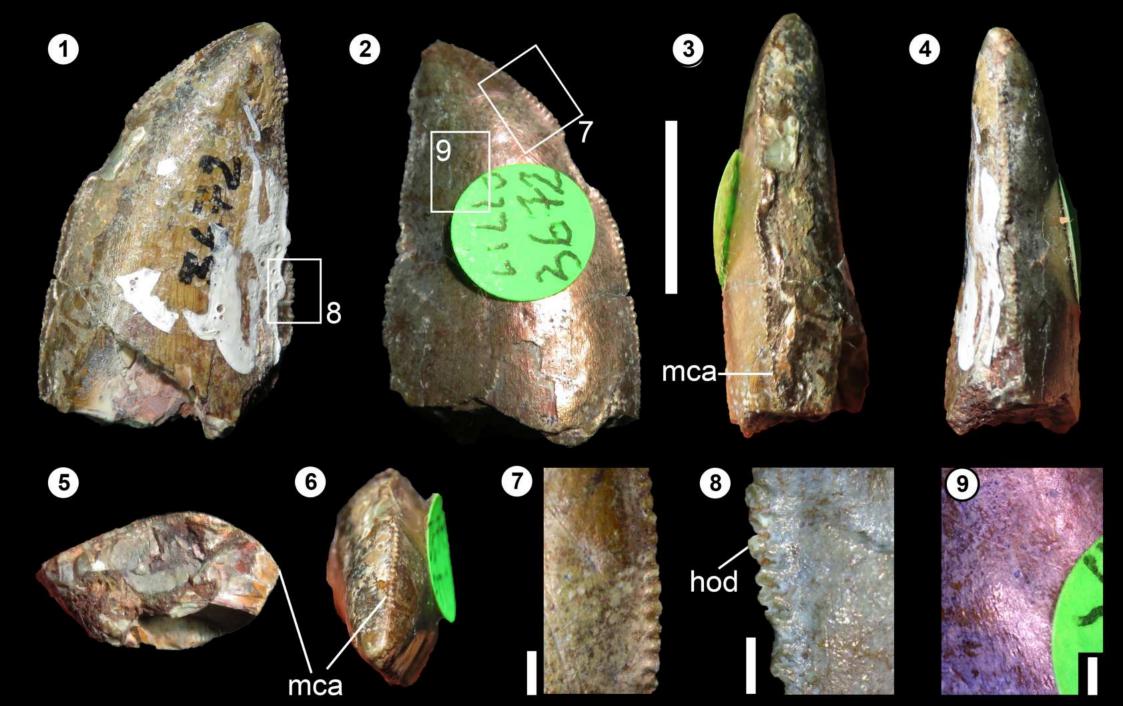


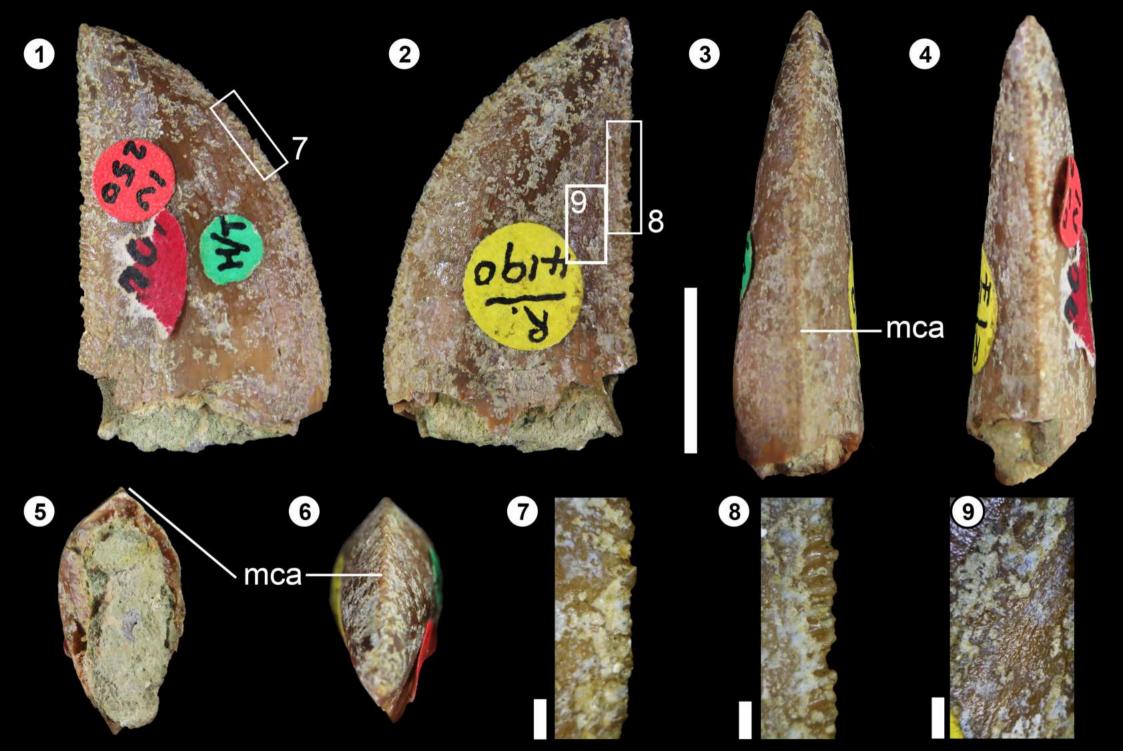


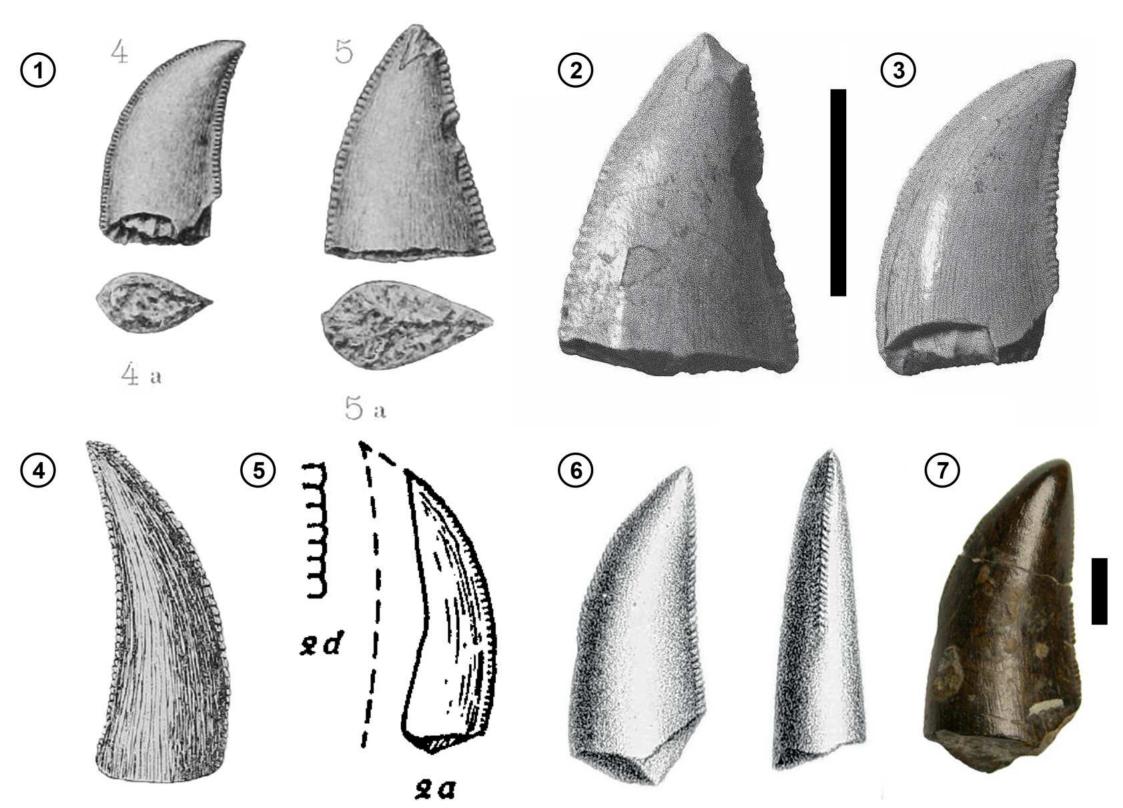












1 TABLE 1. Measurements of the abelisaurid dental material from the Mesozoic of

2 Gondwana.

Specimen	Position	CBL	CBW	СН	AL	CBR	CHR	MCL	MCW	MCR
MSNM V5778	ΜI	10.5	7.4	25.2	26.7	0.7	2.4	10.5	5.4	0.51
MSNM V5781	L IV	6.6	3.6	9.1	10.3	0.55	1.38	5.6	2.6	0.46
MSNM V5799	L IV	8.0	3.4	11.8	?	0.43	1.48	?	?	?
MSNM V5814	LV	8.9	4.9	16.1	18.2	0.55	1.81	7.4	4.0	0.54
MSNM V5818	LV	8.4	4.3	14.6	17.3	0.51	1.74	7.1	3.0	0.42
MSNM V5779	L III	14.1	6.4	24.4	30.3	0.45	1.73	11.7	4.9	0.42
MSNM V5809	T II	9.2	5.2	17.3	21.2	0.57	1.88	7.6	3.8	0.5
MSNM V5789	L IV	8.6	4.4	17.1	18.4	0.51	1.99	7.1	3.3	0.46
MGT-1161	L IV	10.19	5.01	16.71	19.88	0.49	1.64	8.87	4.3	0.48
FC-DPV 3531	L	14.63	7.24	?	?	0.49	?	13.35	5.14	0.39
NHMUK R4190	L	15.36	7.35	24.67	27.45	0.48	1.61	13	6.01	0.46
PVL 3672	L III	14.86	7.75	>21.18	>24.63	0.52	?	?	?	?
PVL 4062-1	L III	13.41	6.36	30.71	29.02	0.47	2.29	12.23	5.62	0.46
PVL 4062-2	L III	8.45	4.3	18.06	16.94	0.51	2.14	8.28	3.45	0.42
PVL 4062-4	T II	8.38	4.58	>10.11	>10.97	0.55	?	?	?	?
PVL 4062-5	ΜI	14.31	9.28	>25.84	29.03	0.65	?	12.29	6.18	0.5
PVL 4173	L III	~18.87	10.37	~45.84	46.17	~0.55	~2.43	16.46	7.63	0.46
PVL 4174	L III	?	?	?	>16.69	?	?	?	?	?
PVL 4175	T II	7.83	~4.86	>11.47	>12.48	~0.63	?	?	?	?
MACN 18.172	L III	12.13	5.68	27.04	28.88	0.47	2.23	8.79	3.95	0.45

Specimen	Position	MDE	MA	MC	MB	DA	DC	DB	DSDI	DCR
MSNM V5778	ΜI	0	17	13	?	17	13	12	1	1.53
MSNM V5781	L IV	0	>28	25	?	22	20	?	1.25	2.75
MSNM V5799	L IV	0	?	25	?	?	18	?	1.389	2.35
MSNM V5814	LV	~3	26	23	23	20	18	17	1.278	1.73
MSNM V5818	LV	2.4	?	22	?	?	17	?	1.294	2.01
MSNM V5779	L III	0	12	10	?	11	10	10	1	2.05
MSNM V5809	T II	0	16	13	12	14	13	13	1	2.22
MSNM V5789	L IV	0	25	22	>22	15	14	?	1.571	2.09
MGT-1161	L IV	>0	?	?	20-25	15	15	20	?	1.99
FC-DPV 3531	L	?	?	14.5	21	?	15	17.5	0.967	?
NHMUK R4190	L	0	?	8.5	13.75	11.9	10	?	0.85	2.03
PVL 3672	L III	0?	13.33	11.66	13	11.3	11.7	?	1	?
PVL 4062-1	L III	0	11.25	10	?	11.3	11	15	0.909	1.48
PVL 4062-2	L III	0	11.66	12.5	15	14	13.3	20	0.938	2.08
PVL 4062-4	T II	0	?	15	18.33	?	14.2	17.5	1.059	?
PVL 4062-5	ΜI	?	?	8	10	?	8.5	?	0.941	?
PVL 4173	L III	?	15	11.25	?	12.5	11.7	?	0.965	~0.93
PVL 4174	L III	?	?	9	10.5	?	8.75	?	1.029	?
PVL 4175	T II	?	17.5	12.5	?	15	12.5	?	1	?
MACN 18.172	L III	0	?	?	?	?	?	?	?	?

1 TABLE 2. Corrected or revised phylogenetic definitions given by Hendrickx et al. (2024)

2 for Berthasauridae, Elaphrosaurinae, and Noasaurinae.

Taxon	First definitional author	First phylogenetic definition	Definition type	New definition	Definitional author	
Berthasauridae (Hendrickx et al., 2024)		The most inclusive clade containing Berthasaura leopoldinae but not Noasaurus leali, Elaphrosaurus bambergi or Ceratosaurus sastrei	Stem- based	The most inclusive clade containing Berthasaura leopoldinae but not Noasaurus leali, Elaphrosaurus bambergi, Abelisaurus comahuensis, or Ceratosaurus nasicornis	Modified from Hendrickx et al. (2024)	
Elaphrosaurinae (Rauhut & Carrano, 2016)	Rauhut and Carrano 2016	All noasaurids that are more closely related to Elaphrosaurus than to Noasaurus, Abelisaurus, Ceratosaurus, or Allosaurus	Stem- based	The most inclusive clade containing Elaphrosaurus bambergi but not Noasaurus leali, Abelisaurus comahuensis, or Ceratosaurus nasicornis	Modified from Hendrickx et al. (2024)	
Noasaurinae (Bonaparte & Powell, 1980)	Rauhut and Carrano 2016	All noasaurids that are more closely related to Noasaurus than to Elaphrosaurus, Abelisaurus, Ceratosaurus, or Allosaurus	Stem- based	The most inclusive clade containing Noasaurus leali but not Elaphrosaurus bambergi, Abelisaurus comahuensis, or Ceratosaurus nasicornis	Modified from Hendrickx et al. (2024)	