

This file is an uncorrected accepted manuscript (i.e., postprint). Please be aware that this version will change during the production process. This postprint will be removed once the paper is officially published. All legal disclaimers that apply to the journal pertain.

Submitted: 31 July 2024 - Accepted: 22 May 2025 - Posted online: 5 September 2025

To link and cite this article:

doi: 10.5710/AMGH.22.05.2025.3620

PLEASE SCROLL DOWN FOR ARTICLE

- 1 THE INFRAORBITAL FORAMEN IN SPARASSODONTA (MAMMALIA,
- 2 METATHERIA), EXTINCT NATIVE PREDATORS OF SOUTH AMERICA

3

- 4 CATALINA SUAREZ¹, CHARLÈNE GAILLARD¹, ROSS D.E. MACPHEE², AND
- 5 ANALÍA M. FORASIEPI¹
- 6 ¹Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA),
- 7 CCT-CONICET Mendoza, Av. Ruiz Leal s/n°, Parque General San Martín, 5500,
- 8 Mendoza, Argentina. catasuarezg@gmail.com; charlene.gaillard.pal@gmail.com;
- 9 acanthodes@gmail.com
- 10 ²Division of Vertebrate Zoology, Department of Mammalogy, American Museum of
- 11 Natural History, 200 Central Park West, 10024-5102, New York, U.S.A.
- 12 macphee@amnh.org

13

14 22 pag.; 3 figs.; 1 table

15

- 16 Running Header: SUAREZ ET AL.: INFRAORBITAL FORAMEN IN
- 17 SPARASSODONTA
- 18 Short Description: This study investigates the infraorbital foramen (IOF) size and its
- 19 implications for the paleoecology of sparassodonts, focusing on *Thylacosmilus*.

20

21 Corresponding author: Catalina Suarez, catasuarezg@gmail.com

22 **Abstract.** The Sparassodonta were the dominant mammalian predators in South 23 America during much of the Cenozoic. Among them, *Thylacosmilus atrox*, with its hyperdeveloped upper canines and bizarre anatomy, has drawn considerable attention. 24 25 This study investigates infraorbital foramen (IOF) size and its implications for the 26 paleoecology of sparassodonts, focusing on Thylacosmilus. Using computed 27 tomography (CT), micro-computed tomography (μ CT), and comparative analyses, we 28 examined the relationship between IOF area (IOF_{area}) and certain anatomical correlates, 29 including foramen rotundum area (FR_{area}), several endocranial structures, and skull 30 dimensions. Comparisons were made within Sparassodonta and to marsupials and 31 carnivorans. Our results reveal that greater variation in IOF_{area} exists among 32 sparassodonts compared to marsupials, with some large borhyaenoids exhibiting 33 disproportionally large IOF_{area}. Notably, *Thylacosmilus* displays intrataxon variation in

the active predators in our sample. This study highlights the anatomical diversity of IOF
 in sparassodonts and underscores the complexity of making behavioral inferences from

IOF_{area}. Contrary to previous studies, which concluded that *Thylacosmilus* possessed a

findings indicate that IOF_{area} in Thylacosmilus does not substantially differ from that of

relatively small IOF that might have been consistent with scavenging behavior, our

39 partial cranial morphology.

34

35

36

- 40 **Keywords.** Maxillary nerve. Infraorbital nerve. Foramen rotundum. *Thylacosmilus*.
- 41 **Resumen.** EL FORAMEN INFRAORBITARIO EN SPARASSODONTA
- 42 (MAMMALIA, METATHERIA), LOS DEPREDADORES NATIVOS
- 43 SUDAMERICANOS. Los Sparassodonta fueron los principales mamíferos
- 44 depredadores de América del Sur durante el Cenozoico. Entre ellos, *Thylacosmilus*
- 45 atrox, con sus caninos superiores hiperdesarrollados y su peculiar anatomía, ha atraído
- 46 considerable la atención. Este estudio investiga el tamaño del foramen infraorbitario

47 (IOF) y sus implicancias para la paleoecología de los Sparassodonta y en particular 48 Thylacosmilus. Utilizando tomografías computarizadas (CT) y micro-tomografías 49 computarizadas (µCT), así como análisis comparativos, se examinó la relación entre el 50 área del IOF (IOF_{area}) y aspectos anatómicos como el área del foramen rotundum 51 (FR_{area}), algunas estructuras endocraneales y las dimensiones del cráneo en varios 52 Sparassodonta, comparándolos con marsupiales y carnívoros. Nuestros resultados 53 revelan una mayor variabilidad en la IOF_{area} entre los esparasodontes en comparación 54 con los marsupiales, con algunos grandes borhyaenoides presentando un área 55 desproporcionalmente grande. Notablemente, Thylacosmilus muestra una variación del 56 IOF_{area} entre individuos. En contraste con previos estudios que afirmaban que 57 Thylacosmilus poseía un IOF relativamente pequeño que implicaría un comportamiento 58 carroñero, nuestros hallazgos indican que el IOF de Thylacosmilus no difiere 59 sustancialmente del de los depredadores activos de nuestra muestra. Este estudio resalta 60 la diversidad anatómica del IOF de los Sparassodonta y la complejidad de realizar 61 inferencias paleoecológicas a partir del análisis parcial de la morfología craneal. 62 Palabras clave. Nervio maxilar. Nervio infraorbitario. Foramen rotundum.

63

Thylacosmilus.

3

64 SPARASSODONTA (MAMMALIA, METATHERIA), A WHOLLY EXTINCT CLADE OF SOUTH 65 AMERICAN METATHERIANS, were the only mammalian predators on that continent for most of the Cenozoic. Although sparassodonts were a diverse group, the taxon that has 66 67 received the most attention is *Thylacosmilus atrox*, sometimes called the "marsupial 68 saber-tooth" in reference to its extremely hypertrophied maxillary canines. Previous 69 authors have recognized notable variation among specimens of *Thylacosmilus*, and we 70 follow Goin & Pascual (1987) in recognizing a single, highly variable species. In the 71 absence of any obvious extant ecological analogues, making inferences about its 72 paleoecology has proven difficult (see Riggs, 1934; Marshall, 1976; Wroe et al., 2013; 73 Janis et al., 2020; Suarez et al., 2023; Wroe & Sansalone, 2023). Although its dental 74 battery as a whole suggests hypercarnivory (e.g., great reduction of the protocone, 75 talonid basin, participants in the crushing mechanism; and a strong development of 76 cutting blades: preparacrista, postmetacrista, and paracristid), it has recently been 77 questioned whether it was an active predator, as opposed to a scavenger, given its 78 supposedly "relatively small" infraorbital foramen (IOF), among other features (Janis et 79 al., 2020; Janis, 2024; but see Discussion). A "relatively small" IOF was thought to 80 imply a "lesser amount of sensory feedback from the muzzle and, hence, lesser ability 81 for precise positioning of the canine" (Janis, 2024: 9). 82 Most cranial apertures are multipurpose, providing ingress/egress for both 83 nerves and the blood vascular system. How much of a foramen's cross-sectional area is 84 devoted to the passage of soft tissues may vary considerably across taxa, making it 85 difficult to make functional inferences alone. In the case of the IOF, however, available 86 comparative evidence indicates that its primary component is always nervous, 87 occupying as much as 80–90% of the cross-sectional area of the foramen (IOF_{area}; 88 Sánchez-Villagra & Asher, 2002; Wible, 2003; Muchlinski, 2008; Evans & Lahunta,

2012). The vascular component, if any, is usually quite small. The infraorbital nerve (ION) is a branch of the maxillary nerve, which leaves the cranial cavity via the foramen rotundum (FR; if present as a separate foramen). The ION's general sensory field is the middle of the face, which includes the muzzle, and any specialized external structures connected with it, such as vibrissae. As vibrissae relay tactile information concerning the environment, head position, obstacles and so forth, it is reasonable to ask whether IOF_{area} is correlated with the amount of sensory information an animal receives along this pathway.

Previous analyses have focused on normalizing IOF size to the general size of the skull, as a way of indexing the relationship of IOF_{area} to vibrissae number or proportion. Translating that information into inferences about behavior or ecology is largely based on conditions in eutherians (e.g., Luo, 2007; Muchlinski, 2010a,b; Wilson *et al.*, 2012; Gill *et al.*, 2014; Muchlinski *et al.*, 2020). Little attention has been given to marsupials, the metatherian crown group (but see Muchlinski, 2010b), and apart from brief comments on some groups (e.g., Engelman & Croft, 2014; Janis *et al.*, 2020; Janis, 2024), IOF morphology has not been studied in detail for this clade.

Using μ CT it is possible to make wide anatomical analyses, such as comparing IOF_{area} to portions of the brain (as visualized from endocast reconstructions) involved with vision, audition, and olfaction (e.g., Gaillard *et al.*, 2021, 2023, 2024). By focusing on *Thylacosmilus* and its close relatives, we explore inter- and intra-specific variability of IOF_{area} in sparassodonts in relation to skull dimensions and specific areas of the brain. Here we make comparisons to their closest extant relatives (marsupials) and plausible ecological analogues (carnivorans) to elucidate the possible role(s) of IOF contents. One hypothesis of interest in this regard is the metrical relationship between IOF_{area} and foramen rotundum area (FR_{area}), which we explore in some detail.

114 **Institutional abbreviations. AMNH VP**, Department of Vertebrate Paleontology, 115 American Museum of Natural History, New York, USA; CORD-PZ, Museo de 116 Paleontología, Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad 117 Nacional de Córdoba, Córdoba, Argentina; FMNH P, Field Museum of Natural 118 History, Paleontological collection, Chicago, USA; MACN, Museo Argentino de 119 Ciencias Naturales 'Bernardino Rivadavia' (MACN-A, Ameghino collection; MACN-120 Ma, Mammal collection; MACN-Pv CH, Paleovertebrados, Chubut collection), Ciudad 121 Autónoma de Buenos Aires, Argentina; MCNAM-PV, Colección de Paleontología de 122 Vertebrados, Museo de Ciencias Naturales y Antropológicas Juan Cornelio Moyano, 123 Mendoza, Argentina; MLP-PV, Colección de Paleontología de Vertebrados, Museo de 124 La Plata, La Plata, Argentina; MMP, Museo Municipal de Ciencias Naturales de Mar 125 del Plata "Lorenzo Scaglia", Mar del Plata, Argentina; MPM-PV, Colección de 126 Paleontología de Vertebrados, Museo Regional Provincial "Padre M. J. Molina", Río 127 Gallegos, Argentina; NMB, Naturhistorisches Museum Basel, Basel, Switzerland; PVL, 128 Paleontología de Vertebrados Lillo, Facultad de Ciencias Naturales e Instituto Miguel 129 Lillo, San Miguel de Tucumán, Argentina; TMM-M, Texas Memorial Museum, 130 Mammal collection, Austin, USA; YPM-VPPU, Princeton University collection, Yale 131 Peabody Museum of Natural History, New Haven, USA. 132 **Anatomical abbreviations.** C/c, upper/lower canines; **FR**, foramen rotundum; I/i, 133 upper/lower incisors; **IOF**, infraorbital foramen; **ION**, infraorbital nerve; **M/m**, 134 upper/lower molars; P/p, upper/lower premolars. 135 Other abbreviations. BM, body mass; CS, cranium size (i.e., geometric mean of 136 cranial shape in Muchlinski, 2010a,b); CT, computed tomography; µCT, micro-137 computed tomography; **LDA**, Linear Discriminant Analysis; **ln**, natural logarithm;

PCA, Principal Component Analysis; R², coefficient of determination; S1-3, 138 139 Supplementary Online Information table 1–3; **SE**, Smearing Estimate. 140 **Dental formula.** The conventional primitive metatherian dental formula followed in 141 this contribution is: I 1–5 / i 2–5, C/c 1, P/p 1–3, M/m 1–4 (e.g., see Voss & Jansa, 142 2009; Goin et al., 2016; Beck et al., 2022, and literature cited). For postcanine 143 homology considering ontogeny and character evolution in high-level mammalian 144 phylogeny see for example Luckett (1993) and O'Leary et al. (2013). 145 146 MATERIAL AND METHODS 147 **Material** 148 Table 1 lists the sparassodont specimens that are our primary focus and certain 149 marsupials included to provide a phylogenetic framework. Comparative information on 150 other metatherians, placental carnivorans, and primates taken from the literature 151 (Muchlinski, 2010a,b) is provided in Tables S2–3. 152 Analyses comparing IOF_{area} with FR_{area}, olfactory bulbs, and orbital convergence 153 are based on tomographic measurements collected from our specimens set (Table 1). 154 Methods 155 **Image processing and measurements.** Specimens were studied via CT and μ CT scans. 156 Scanning parameters and related data are given in Table S1 for each examined 157 specimen. CT scans were initially processed in the open software Image J (Schneider et 158 al., 2012) to enhance contrast and reduce file size. Tridimensional models were 159 generated by segmentation using the software Avizo/Amira (Zuse Institute Berlin and 160 Visualization Sciences Group, 1995–2012) and the open software 3D Slicer (Fedorov et 161 al., 2012). Linear measurements of the skull were taken on CT scans using 3D Slicer v. 5.2.2 for Linux. Measurements of the IOF_{area} and FR_{area} were taken directly in 3D Slicer 162

using the Markups module (Fig. 1). To accomplish this, orthogonal CT sections were reoriented as follows: the axial and sagittal planes were oriented parallel to the canal, and the coronal plane was oriented perpendicular to them (Fig. 1.1–1.3). A closed curve was drawn along the margin of the foramen on the coronal slice so that the area enclosed would be transverse to the canal (Fig. 1.1, 1.4–1.5). The area surrounded by that curvature, corresponding to the foramen area, was calculated by the software. These measurements correspond to those presented by Muchlinski *et al.* (2020) with the difference that those authors used latex casts instead of virtual 3D meshes of the canals. In some specimens, the borders of the FR or IOF were incomplete due to breakage. In those cases, we measured the rostralmost portion of their preserved transverse areas. Linear cranial length and bizygomatic width measurements follow Muchlinski (2010a,b).

Figure 1 here

Most of the specimens in our sample have a single aperture of IOF. However, in specimen NMB c.2526 of *Thylacinus cynocephalus*, we detected multiple apertures of IOF. For our analysis, we summed the individual apertures into a total area. Regarding Sparassodonta, accessory foramina around IOF were observed in specimen YPM-VPPU 15701 of *Borhyaena tuberata* (Sinclair, 1906; not included in our sample set). In the absence of CT, it is unclear if both openings are for the ION (i.e., in this case, we would expect that both facial openings connect with the maxillary canal) or if at least one of the openings is for vasculature only (e.g., diploic or emissary foramina, justifying excluding it from the analysis). In addition, by surface inspection Babot *et al.* (2002) mentioned that specimen PVL 4187 of *Callistoe vincei* exhibits multiple apertures of

IOF. However, CT scanning reveals that two accessory foramina appear only on the right side of the cranium, and directly lead to the alveolar space of P3 without connecting to the maxillary canal. We interpret that their content was most likely vascular and/or indirectly related to the ION (e.g., superior alveolar nerve and vessels) and consequently excluded from our measurement of the IOF_{area}.

The measurements taken in this study are given in Table 1. The complete dataset of measurements compiled from Muchlinski (2010a,b) and additional estimations made in the present study are provided in Tables S2–3. The angles of orbital convergence and olfactory bulb percentages were taken from Gaillard *et al.* (2023, 2024) and Gaillard (2024).

Analyses. In our initial analyses we explored several datasets and variables not only using bivariate plots but also PCA and LDA, to ensure a consistent analytical approach across datasets with varying numbers of variables. Even when we retained for discussion those analyses with only two variables (as ones we considered the most informative; Fig 2), we decided to show their PCA and LDA results in the Supplementary Online Information Figures (Figs. S2–3), as these approaches allowed to visualize the data in a transformed space more clearly than in a biplot (e.g., visualize the different groups and their overlaps). While bivariate plots effectively illustrate direct relationships, PCA and LDA provide standardized, orthogonal axes that can reveal underlying patterns and maximize group separation, respectively. This multivariate approach facilitates direct comparison of results across all analyses and helps to identify features that may not be immediately apparent from raw variable plots alone (Jolliffe & Cadima, 2016; James et al., 2021; Greenacre et al., 2022).

Bivariate regression analyses (XY plots) were conducted in Microsoft Excel.

Exploratory analyses, including PCA and LDA, were made using the open software

213 PAST (Hammer et al., 2021). The IOF_{area} was examined in comparison to the general 214 cranium size (CS), using the geometric mean of cranial shape (calculated based on 215 cranial length and maximum bizygomatic width) as body size correction, following 216 Muchlinski (2010b). 217 Dataset 1 (i.e., Sparassodonta, Marsupialia, and Carnivora; Tables 1, S2) was 218 used to compare the ln(IOFarea) and ln(CS) in an XY plot (Fig. 2.1; S1). We also made 219 exploratory analyses with this dataset (Figs. S2–3; Tables S4–5). 220 Dataset 2 (i.e., Sparassodonta and Marsupialia variables measured from CT 221 scans, plus Primates sample from Muchlinski, 2010a; see Tables 1, S3) was used to test differences among body size correction parameters. We compared the ln(IOF_{area}) with 222 223 the ln(CS) and ln(BM) using XY plots (Figs. S4–5). Primates were included to leverage 224 the extensive dataset from Muchlinski (2010a) for this comparison. BM estimations 225 (Table 1) for non-borhyaenoid sparassodonts (when possible, excepting one incomplete 226 specimen of Cladosictis patagonica) were made based on M2 length, following Zimicz 227 (2012). For borhyaenoids, we used orbital-occiput length (OOL; when possible, 228 excepting incomplete Patagosmilus goini), following Van Valkenburgh (1990), to avoid 229 underestimation produced by dental variables (see Prevosti et al., 2012). 230 We hypothesized that enhancement in other sensory areas of the head could 231 compensate for a diminution in certain sensory capabilities. Dataset 3 (i.e., 232 Sparassodonta and Marsupialia measured from CT scans; see Table 1) was used to 233 contrast the "relative" IOF_{area} (following Muchlinski, 2010b) with other measurable 234 parameters related to other cranial sensory areas (Table S1): the percentage of braincase 235 endocast volume filled by the olfactory bulbs (Macrini, 2006; Macrini et al., 2007; Fig. 236 S6) and the angle of orbital convergence (Gaillard et al., 2023; Fig. S7). In the two lastnamed analyses, we did not separately discriminate specimens but instead used average data for each species.

The last parameter to be evaluated was FR_{area} , selected because of the anatomical relationship between it and the distal part of the maxillary nerve (aperture to IOF). We compared the relation between the $ln(FR_{area})$ and the ln(CS) (Fig. 2.2), and between the $ln(IOF_{area})$ and $ln(FR_{area}; Fig. 2.3)$, using Dataset 3. Additionally, we calculated the ratio between the FR_{area} and IOF_{area} , to obtain a measurable index to express the differences in these areas (Table 1). The closer the index to 1, the more similar the areas. The lowest values show the largest area difference, meaning a relatively larger IOF.

RESULTS

We compared body size correction parameters (CS and BM) and found no considerable differences in our results (Figs. S4–5). However, since BM estimation is particularly challenging for groups like sparassodonts, which lack extant representatives (e.g., Nelson *et al.*, 2024), we focused here on the results obtained using the CS (i.e., geometric mean in Muchlinsky, 2010a,b) as a proxy for body size.

With some exceptions (see below), marsupials display a consistent relationship between IOF_{area} and CS, as IOF_{area} is proportionally similar across the entire size spectrum of species in our marsupial sample (Fig. 2.1). However, among marsupials, *Thylacinus cynocephalus* has an IOF_{area} relatively larger than that of other members of this group (including dasyurids) and plots near sparassodonts. Among sparassodonts, there are some species in which the IOF_{area} is proportionally larger than expected for their CS (e.g., *Arctodictis, Borhyaena, Callistoe*, and *Thylacosmilus* compared to *Cladosictis*; Fig. 2.1).

$\overline{}$	-	
7.	h	1

263

Figure 2 here

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

Specimen MPM-PV 3625 of Borhyaena tuberata does not closely group with other specimens of this species. This may be an artefact, as this specimen was analyzed with a medical scanner, which potentially affects the precision of measurements. For this reason, we focus on other specimens of this species (YPM-VPPU 15120, digitalized with μCT; and MPM-PV 4380, with results congruent with the YPM specimen). Contrasting the IOF_{area} and the CS, sparassodonts partially overlap with marsupials and completely plot inside the range of variation found in carnivorans (Figs. 2.1, S1). Compared to other taxa, sparassodonts show a more pronounced positive allometry in IOF size, as indicated by the more positive slope of the regression line (Fig. 2.1). This result is probably a consequence of differences in IOF size between borhyaenoids and hathliacynids. Additionally, the exploratory analyses show a slight predominance of the ln(IOF_{area}) variable in the PCA (Fig. S1), with sparassodonts closer to this variable than to the ln(CS). This is even more evident in the LDA (Fig. S2) where the ln(IOF_{area}) discriminant is more dominant and the sparassodont species are much closer to each other. These results imply that the IOF_{area} is not entirely proportional to total skull size but tends to be disproportionally bigger in larger sparassodonts. Among sparassodonts, contrasting results were observed for small (hathliacynids) vs. large (borhyaenoids) species in our sample. Borhyaenoids show relatively larger IOF than hathliacynids. Within Hathliacynidae, there is comparably little intraspecific variation in IOF_{area} relative to the CS compared to Borhyaenoidea

(Fig. 2.1). Among Borhyaenoidea there is not a close grouping graphically among

specimens of the same species nor a clear pattern of relationship between the evaluated parameters (Fig. 2). From our analyses we highlight two main results: (1) large borhyaenoids such as *Arctodictis sinclairi*, *A. munizi*, *Borhyaena tuberata*, *Callistoe vincei*, and *Thylacosmilus atrox* have proportionally larger IOF_{area}; and (2) in *Thylacosmilus atrox*, IOF_{area} varies among different individuals of the same species (Table 1; Fig. 2).

Another relationship of interest is relative IOF_{area} plotted against relative volume of the olfactory bulbs (Fig. S6). Mammals with larger olfactory bulbs relative to total braincase endocast volume have demonstrably better olfactory capabilities than mammals with smaller bulbs (e.g., Gittelman, 1991). Given this relationship, we expected that sparassodont species with smaller olfactory bulbs would have less developed olfactory capabilities, raising the possibility that other sensory modalities, such as those innervated by the ION, might have been enhanced. However, no clear pattern of enhancement in the form of a larger relative IOF_{area} compared to olfactory bulbs was found (Fig. S7).

When relative IOF_{area} is plotted against the angle of orbital convergence (Fig. S7) we observe that, for all sparassodonts and marsupials with larger infraorbital foramina, there is a similar pattern of having smaller angles of orbital convergence. We recognize the difficulty and uncertainty of recovering a true pattern using our small sample size. However, assuming that a similar result could be obtained with a larger sample, this might indicate some relationship between the organization of the orbits and the sensitivity of the snout in metatherians, where the role of specialized organs like the vibrissae or rhinarium is enhanced when 3D vision is limited.

Evaluating the variability of the IOF_{area} compared to the FR_{area} , we observe four main results: (1) sparassodonts have a proportionally larger FR_{area} compared to other

metatherians (Fig. 2.2); (2) sparassodonts have a higher dispersion in their FR_{area} values, compared to the CS (Fig. 2.2) and IOF_{area} (Fig. 2.3); (3) the relationship between IOF_{area} and FR_{area} remains relatively more constant in hathliacynids than in most analyzed borhyaenoids; and (4), some borhyaenoids (i.e., *Arctodictis sinclairi, A. munizi, Borhyaena tuberata, Prothylacynus patagonicus*, and the specimen FMNH P14531 of *Thylacosmilus atrox*—but not MMP 1443-M and MLP-PV 35-X-4-1—; see discussion) have disproportionally larger IOF relative to the FR. These observations are supported by a lower index FR_{area}/ IOF_{area} (values lower than 0.35; Table 1). Hathliacynids are within the range of the marsupials evaluated (FR_{area}/ IOF_{area} values higher than 0.35).

DISCUSSION

Despite the limitations of small sample size, sparassodonts display more variation overall than extant marsupials. Some taxa with disproportionally large IOF size compared to CS (e.g., *Arctodictis, Borhyaena, Callistoe*, some specimens of *Thylacosmilus*) are more similar to carnivorans than to marsupials (Fig. 2.1).

Among extant species, placental mammals with a short snout usually have a smaller IOF (Kästner, 2014; Davis *et al.*, 2021). However, this pattern is not evident in sparassodonts, as borhyaenoids (e.g., *Arctodictis, Borhyaena*) with shorter snouts have a relatively larger IOF compared to hathliacynids (e.g., *Cladosictis*) with longer snouts and smaller IOF_{area}. Additionally, in some of the sparassodonts studied, such as *Thylacosmilus atrox*, IOF_{area} shows the largest variation encountered in our mammal sample. This result is consistent with the degree of anatomical variability of this species reported previously (see Riggs, 1934; Goin & Pascual, 1987; Marshall, 1976).

Some previous studies considered that *Thylacosmilus* had a relatively small infraorbital foramen (Janis *et al.*, 2020; Janis, 2024). However, we found that, although

337 the IOF_{area} of Thylacosmilus atrox is smaller than in the largest felids (including saber-338 tooth cats, such as Smilodon populator—with a relative IOF_{area} of 1.57 vs. 1.06 in T. 339 atrox; Figs. 2, 3), it is larger than in several other felids and carnivorans with a similar 340 CS, and is among the largest within our metatherian sample (Fig. 2). According to Janis 341 (2024) the "small infraorbital foramen and the "virtual lack" of incisors" are 342 characteristic of scavengers rather than active predators. The author links the small 343 IOF_{area} of *Thylacosmilus* to a "lesser amount of sensory feedback from the muzzle and, 344 hence, lesser ability for precise positioning of the canine". This correlation is 345 controversial because no studies are showing a direct correlation between the size of 346 IOF_{area} and the efficiency of ION sensory fibers with regard to canine positioning. The 347 ION receives sensory information not only from the canine but also from the skin and 348 mucous membranes around the middle of the face (Evans & Lahunta, 2012; Standring, 349 2016) including the maxillary region and rhinarium (Patrizi & Munger, 1966; Gasser & 350 Miller Wise, 1972; Muchlinski, 2008, 2010a). Additionally, as seen in our results (Fig. 351 2), several extant active predators (e.g., Felis chaus, F. pardalis, F. silvestris, Lynx 352 canadensis, Puma concolor) have IOF_{area} measurements that are even smaller than those 353 of *Thylacosmilus*. In addition, sparassodonts with a bone-breaker morphology (typical 354 of scavengers, e.g., borhyaenids; Zimicz, 2012) have an IOF_{area} larger than in 355 Thylacosmilus, whether comparison of this area is made to the FR or the CS. It is also 356 important to note that at least one pair of lower incisors has been previously reported for 357 Thylacosmilus (Goin and Pascual, 1987). They are smaller than in other borhyaenoids, 358 but the evidence is insufficient to determine whether a reduction in incisor number had 359 actually occurred (more than one pair may have been present according to Goin & 360 Pascual, 1987). In any case, a reduction in this part of the dentition is not characteristic of mammalian scavengers, obligate (e.g., Rieger, 1981) or facultative (e.g., Bekoff, 361

1977; Moehlman & Hayssen, 2018; Hayssen & Noonan, 2021). Janis (2024) concludes that *Thylacosmilus* probably does not qualify as a strict ecological analog of saber-tooth felids, and that its predatory behavior would not be the same, despite prior studies describing their broad similarities in their overall morphology and function (e.g., Wroe *et al.*, 2013, Melchiona *et al.*, 2021). At the same time, we agree with Janis (2024) that, in light of the unique anatomy of *Thylacosmilus*, finding analogies is probably not straightforward.

Figure 3 here

Recent studies (e.g., Muchlinski, 2010a,b; Mitchinson *et al.*, 2011; Muchlinski *et al.*, 2020; Milne *et al.*, 2021; contrary to Kay & Cartmill, 1977; Muchlinski, 2008) have concluded that it is not currently possible to reconstruct vibrissal patterns or coverage—or, for that matter, any soft-tissued rhinarial or facial structure—in a completely extinct group. However, deserving of some attention is the relative size relationship between the IOF_{area} and the FR_{area} among sparassodonts, where the IOF is seen to be disproportionally large in the larger borhyaenoids sampled here (i.e., *Arctodictis munizi, A. sinclairi, Borhyaena tuberata, Prothylacynus patagonicus*, and the holotype of *Thylacosmilus atrox*; Fig. 2.2–2.3; see Table 1, with FR_{area}/ IOF_{area} relationship lower than 0.35). This list also includes the recently extinct marsupial wolf *Thylacinus cynocephalus* and the extant semi-aquatic didelphid *Chironectes minimus* (Table 1). In the particular case of *Thylacosmilus*, we found that the relationship between the IOF and FR varies among the different specimens evaluated (which is consistent with the known large morphological variation of this taxon). Following this index, the largest contrast between IOF and FR is found in the holotype (FMNH

P14531), while in the remaining specimens, the index is similar to that of the extant active predator *Dasyurus hallucatus*.

The infraorbital canal in mammals is occupied by the infraorbital nerve and vascular components (Sánchez-Villagra & Asher, 2002; Muchlinski, 2008), the infraorbital artery and vein. As the FR transmits the maxillary division of the trigeminal nerve (cranial nerve V), we would expect that the difference between FR and IOF areas would be more or less constant among the species evaluated if the IOF nerve bundle size remained proportionally the same. The marked difference in FR and IOF areas, as seen particularly in larger borhyaenoids, may imply that other occupants of the infraorbital canal (i.e., blood vessels) varied in ways that cannot be predicted from currently available indicia. In short, the size of IOF in these taxa does not directly reflect nerve size and/or enhanced facial sensation.

CONCLUSIONS

The relative area of the IOF in sparassodonts exhibits a broad range of variation, overlapping with data for carnivorans and large marsupials. Notably, taxa such as *Arctodictis*, *Borhyaena*, *Callistoe*, and some specimens of *Thylacosmilus* have a disproportionately large IOF_{area} relative to their skull size, resembling in this regard carnivorans more than marsupials. *Thylacosmilus atrox* shows intraspecific variation in IOF_{area}. In addition, its IOF_{area} is comparable to that of some of the active predators included in our analysis, challenging the idea that its IOF_{area} can be correlated with scavenging behavior.

The most interesting pattern we observed among sparassodonts is the relationship between IOF_{area} relative to FR_{area} (Fig. 2.3), with the IOF disproportionally larger in the largest borhyaenoids sampled. Smaller sparassodonts (hathliacynids)

follow the same regression line as extant marsupials. Looking at the residuals of the relationship, hathliacynids show IOF larger than the average marsupial, but in the same general range as dasyurid marsupials (i.e., extant analogues in a roughly comparable niche). We interpret this to imply that the structure of their facial sensory areas would have been closely comparable to that of extant taxa. However, because of the lack of any relationship between the sensory areas analyzed in this study and foramina sizes in large borhyaenoids (*Arctodictis munizi, A. sinclairi, Borhyaena tuberata*, and *Thylacosmilus atrox*), we suggest that intraclade difference between small and large taxa is probably due to the presence and size of IOF vasculature.

The use of μCT scans and advanced software for 3D modeling offers a comprehensive method for studying functionally important cranial apertures. At the same time, this study highlights the complexity of interpreting the paleobiology of extinct species and emphasizes the need for multifaceted approaches in paleontological research.

ACKNOWLEDGMENTS

We acknowledge M. Sánchez-Villagra and F. J. Prevosti for valuable comments on previous versions of this manuscript. We thank Vera Weisbecker for rich discussions about *Thylacinus* IOF morphology. We thank curators who permitted the study and scanning of specimens under their care A. Kramarz, S. Alvarez, L. Chornogubsky (former), and A. Martinelli (MACN-Pv), P. Teta (MACN-Ma), M. Taglioretti and F. Scaglia (MMP), M. Reguero (MLP), D. Brinkman (YPM), R. O'Leary and J. Galkin (AMNH), G. Campos (MCNAM), as well as S. F. Vizcaino, S. Bargo (MLP), and E. Cerdeño (IANIGLA) for granting access to sparassodonts specimen from their recent excavations housed at MPM and MCNAM, respectively. We thank F. J. Prevosti

(Museo de Ciencias Antropológicas y Naturales de la Universidad Nacional de La
Rioja), L. Costeur (NMB), G. Schultz (Biomaterial Science Center), S. Ladevèze
(Musée National d'Histoire Naturelle), Marta Bellato (AST-RX, Project ASTRX-2015-
022), Zhe-Xi Luo (University of Chicago), L. Witmer (Ohio University), M. Taglioretti
and F. Scaglia (MMP), the Instituto Radiólogico Mar del Plata (Iradiologico), Judith
Babot (Fundación Miguel Lillo), C. Capiel, and S. Rossini (Iradiologico), the Facultad
de Matemática, Astronomía, Física y Computación (FAMAF), G. Tirao (FAMAF), the
Clínica La Sagrada Familia, the Equipo de Neurocirurgía Endovascular Radiología
Intervencionista (ENERI) and the Fundación Escuela de Medicina Nucelar
(FUESMEN), and Diagnósticos Gamma, Tucumán, for their help with the
tomographies. For data accessibility, we would like to acknowledge DigiMorph.org,
The University of Texas High-Resolution Xray CT Facility (UTCT) (Dr. Ted Macrini,
NSF grants IIS-0208675 and DEB-0309369); and Morphosource.org, Duke University
(Eric Delson and the AMNH Department of Mammalogy, collection funded by AMNH
and NYCEP). This research was partially funded by the projects PICT 2019-2874 and
SNF-SPIRIT, IZSTZ0-208545. We thank Russell Engelman, the anonymous reviewer,
and editor Darin Croft for their valuable comments and suggestions, which enhanced
the quality of this manuscript.
REFERENCES
Beck, R. M., Voss, R. S., & Jansa, S. A. (2022). Craniodental morphology and
phylogeny of marsupials. Bulletin of the American Museum of Natural History,
457(1) 1 252
457(1), 1–352.

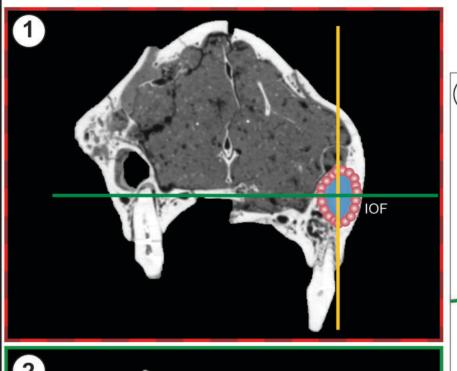
https://doi.org/10.2307/3503817

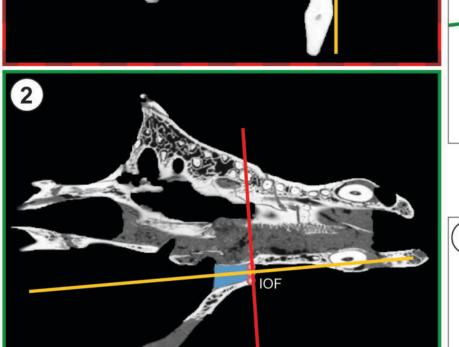
Davis, L. V., Hoyer, N. K., Boscan, P., Rao, S., & Rawlinson, J. E. (2021). Computed 462 tomography analysis of the feline infraorbital foramen and canal. Frontiers in 463 464 Veterinary Science, 7(619248), 1–6. https://doi.org/10.3389/fvets.2020.619248 465 Engelman, R. K., & Croft, D. A. (2014). A new species of small-bodied sparassodont 466 (Mammalia, Metatheria) from the Middle Miocene locality of Quebrada Honda, 467 Bolivia. Journal of Vertebrate Paleontology, 34(3), 672–688. http://dx.doi.org/10.1080/02724634.2013.827118 468 Evans, H. E., & Lahunta, A. de. (2012). Miller's anatomy of the dog (4th ed.). Elsevier 469 470 Health Sciences. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., 471 472 Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, 473 J. V., Pieper, S., & Kikinis, R. (2012). 3D Slicer as an image computing 474 platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, 475 30(9), 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001 476 Forasiepi, A. M. & Sánchez Villagra, M. R. (2014). Heterochrony, dental ontogenetic 477 diversity and the circumvention of constraints in marsupial mammals and extinct 478 relatives. Paleobiology, 40, 222-237. 479 Gaillard, C. (2024). Evolución de las estructuras encefálicas de los mamíferos 480 depredadores nativos de América del Sur, su relevancia para inferir hábitos 481 paleoecológicos y el rol de los Sparassodonta en los ecosistemas del Cenozoico 482 (Tesis Doctoral, Programa de Postgrado en Biología, Universidad Nacional de 483 Cuyo, Mendoza). 484 Gaillard, C., Forasiepi, A. M., S. D., MacPhee, R. D. E., & Ladevèze S. (2024). 485 Cranium of Sipalocyon externus (Metatheria, Sparassodonta) with remarks on 486 the paleoneurology of hathliacynids and insights into the Early Miocene

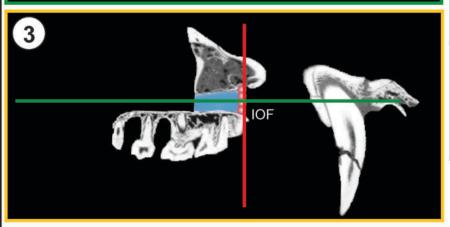
487	sparassodonts of Patagonia, Argentina. Swiss Journal of Palaeontology,
488	143(20), 1–34. https://doi.org/10.1186/s13358-024-00312-x
489	Gaillard, C., MacPhee, R. D. E., & Forasiepi, A. M. (2021). The stapes of stem and
490	extinct Marsupialia: Implications for the ancestral condition. Journal of
491	Vertebrate Paleontology, 41(2), e1924761.
492	https://doi.org/10.1080/02724634.2021.1924761
493	Gaillard, C., MacPhee, R. D. E., & Forasiepi, A. M. (2023). Seeing through the eyes of
494	the sabertooth <i>Thylacosmilus atrox</i> (Metatheria, Sparassodonta).
495	Communications Biology, 6(257), 1–7. https://doi.org/10.1038/s42003-023-
496	04624-5
497	Gasser, R. F., & Miller Wise, D. (1972). The trigeminal nerve in the baboon. The
498	Anatomical Record, 172(3), 511–522. https://doi.org/10.1002/ar.1091720305
199	Gill, P. G., Purnell, M. A., Crumpton, N., Brown, K. R., Gostling, N. J., Stampanoni,
500	M., & Rayfield, E. J. (2014). Dietary specializations and diversity in feeding
501	ecology of the earliest stem mammals. Nature, 512(7514), 303-305.
502	https://doi.org/10.1038/nature13622
503	Goin, F. J., & Pascual, R. (1987). News on the biology and taxonomy of the marsupials
504	Thylacosmilidae (late Tertiary of Argentina). Anales de La Academia Nacional
505	de Ciencias Exactas, Físicas y Naturales (Argentina), 39, 219–246.
506	Goin, F.J., Woodburne, M.O., Zimicz, A.N., Martin, G.M., & Chornogubsky, L. (2016)
507	A brief history of South American metatherians. Evolutionary contexts and
508	intercontinental dispersals. Springer. http://dx.doi.org/10.1007/978-94-017-
509	7420-8

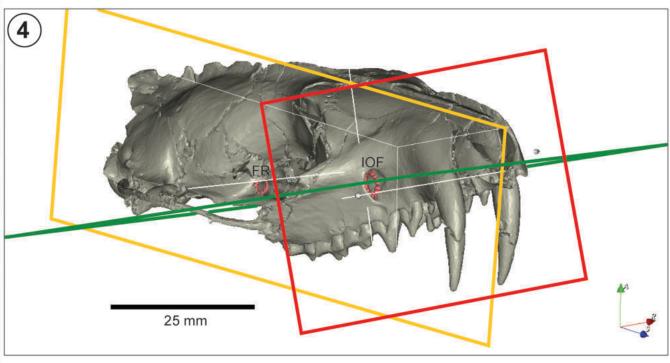
- 510 Greenacre, M., Groenen, P. J., Hastie, T., D'Enza, A. I., Markos, A., & Tuzhilina, E.
- 511 (2022). Principal component analysis. *Nature Reviews Methods Primers*, 2, 100.
- 512 https://doi.org/10.1038/s43586-022-00159-0
- Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics
- software package for education and data analysis. *Palaeontologia Electronica*,
- 515 4(1), 1–9. http://palaeo-electronica.org/2001 1/past/issue1 01.htm.
- Hayssen, V., & Noonan, P. (2021). *Crocuta crocuta* (Carnivora: Hyaenidae).
- 517 *Mammalian Species*, 53(1000), 1–22. https://doi.org/10.1093/mspecies/seab002
- 518 Hiatt, J. L., & Gartner, L. P. (1987). *Textbook of head and neck anatomy* (2nd ed.).
- 519 Lippincott Williams and Wilkins.
- 520 Horn, R. N. V. (1970). Vibrissae structure in the *Rhesus* monkey. Folia Primatologica,
- 521 *13*(4), 241–285. https://doi.org/10.1159/000155325
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical
- 523 *Learning: with Applications in R* (2nd ed.). Springer.
- Janis, C. M. (2024). Who was the real sabertooth predator: *Thylacosmilus* or
- 525 Thylacoleo? The Anatomical Record. https://doi.org/10.1002/ar.25444
- Janis, C. M., Figueirido, B., DeSantis, L., & Lautenschlager, S. (2020). An eye for a
- 527 tooth: *Thylacosmilus* was not a marsupial "saber-tooth predator". *PeerJ*, 8,
- 528 e9346.
- Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent
- developments. *Philosophical Transactions of the Royal Society A:*
- Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.
- 532 https://doi.org/10.1098/rsta.2015.0202
- Kästner, S. B. R. (2014). Anesthesia and analgesia for general surgery. In S. J. Langley-
- Hobbs, J. L. Demetriou, & J. F. Ladlow (Eds.), Feline soft tissue and general

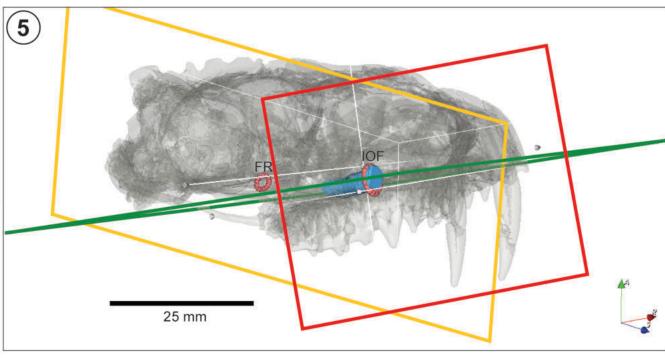
535	surgery (pp. 15–27). W.B. Saunders. https://doi.org/10.1016/B978-0-7020-
536	4336-9.00002-0
537	Kay, R. F., & Cartmill, M. (1977). Cranial morphology and adaptations of <i>Palaechthon</i>
538	nacimienti and other paromomyidae (Plesiadapoidea, ?Primates), with a
539	description of a new genus and species. Journal of Human Evolution, 6(1), 19-
540	53. https://doi.org/10.1016/S0047-2484(77)80040-7
541	Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian
542	mammals. In F. S. Szalay, M. J. Novacek, & M. C. McKenna (Eds.). Mammal
543	phylogeny: Mesozoic differentiation, multituberculates, monotremes, early
544	therians, and marsupials (pp. 182-204). Springer-Verlag.
545	Luo, ZX. (2007). Transformation and diversification in early mammal evolution.
546	Nature, 450(7172), 1011–1019. https://doi.org/10.1038/nature06277
547	Mackinnon, S. E., & Dellon, A. L. (1995). Fascicular patterns of the hypoglossal nerve.
548	Journal of Reconstructive Microsurgery, 11(3), 195–198.
549	https://doi.org/10.1055/s-2007-1006531
550	Macrini, T. E. (2006). The evolution of endocranial space in mammals and non-
551	mammalian cynodonts (Doctoral Dissertation, University of Texas at Austin).
552	Available from http://hdl.handle.net/2152/13066
553	Macrini, T. E., Rowe, T., & VandeBerg, J. L. (2007). Cranial endocasts from a growth
554	series of Monodelphis domestica (Didelphidae, Marsupialia): a study of
555	individual and ontogenetic variation. Journal of Morphology, 268(10), 844-865
556	https://doi.org/10.1002/jmor.10556
557	Marshall, L. G. (1976). Evolution of the Thylacosmilidae, extinct saber-tooth
558	marsupials of South America. PaleoBios, 23, 1–30.

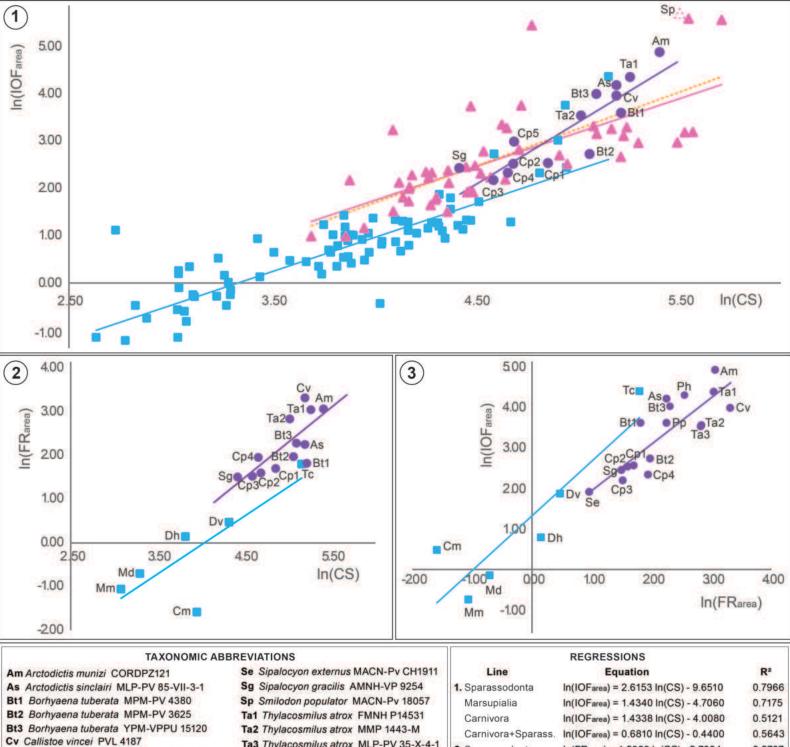

559 Milne, A. O., Muchlinski, M. N., Orton, L. D., Sullivan, M. S., & Grant, R. A. (2021). 560 Comparing vibrissal morphology and infraorbital foramen area in pinnipeds. The Anatomical Record, 305(3), 556–567. https://doi.org/10.1002/ar.24683 561 562 Mitchinson, B., Grant, R. A., Arkley, K., Rankov, V., Perkon, I., & Prescott, T. J. 563 (2011). Active vibrissal sensing in rodents and marsupials. *Philosophical* 564 Transactions of the Royal Society B: Biological Sciences, 366(1581), 3037– 565 3048. https://doi.org/10.1098/rstb.2011.0156 566 Moehlman, P. D., & Hayssen, V. (2018). Canis aureus (Carnivore: Canidae). 567 Mammalian Species, 50(957), 14–25. https://doi.org/10.1093/mspecies/sey002 568 Muchlinski, M. N. (2008). The relationship between the infraorbital foramen, 569 infraorbital nerve, and maxillary mechanoreception: implications for interpreting 570 the paleoecology of fossil mammals based on infraorbital foramen size. The 571 Anatomical Record, 291(10), 1221–1226. https://doi.org/10.1002/ar.20742 572 Muchlinski, M. N. (2010a). Ecological correlates of infraorbital foramen area in 573 primates. American Journal of Physical Anthropology, 141(1), 131–141. 574 https://doi.org/10.1002/ajpa.21137 575 Muchlinski, M. N. (2010b). A comparative analysis of vibrissa count and infraorbital 576 foramen area in primates and other mammals. Journal of Human Evolution, 577 58(6), 447–473. https://doi.org/10.1016/j.jhevol.2010.01.012 578 Muchlinski, M. N., Wible, J. R., Corfe, I., Sullivan, M., & Grant, R. A. (2020). Good 579 vibrations: The evolution of whisking in small mammals. The Anatomical 580 Record, 303(1), 89–99. https://doi.org/10.1002/ar.23989 581 O'Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. 582 P., Goldberg, S. L. et al. (2013). The placental mammal ancestor and the post-583 K-Pg radiation of placentals. Science, 339(6120), 662–667.


Nelson, A., Engelman, R. K., & Croft, D. A. (2023). How to weigh a fossil mammal? 584 585 South American notoungulates as a case study for estimating body mass in extinct clades. Journal of Mammalian Evolution, 30, 773–809. 586 587 https://doi.org/10.1007/s10914-023-09669-1 588 Patrizi, G., & Munger, B. L. (1966). The ultrastructure and innervation of rat vibrissae. 589 Journal of Comparative Neurology, 126(3), 423–435. https://doi.org/10.1002/cne.901260305 590 591 Prevosti, F. J., Forasiepi, A. M., Ercoli, M. D., & Turazzini, G. F. (2012). Paleoecology 592 of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz 593 Formation. In: Vizcaíno S.F., Kay R.F. & Bargo M.S. (Eds), Early Miocene 594 paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation (pp. 173–193). Cambridge University Press. 595 596 Rieger, I. (1981). Hyaena hyaena. Mammalian Species, 150, 1–5. https://doi.org/10.2307/41353899 597 598 Riggs, E. S. (1933). Preliminary description of a new marsupial saber-tooth from the 599 Pliocene of Argentina. Field Museum of Natural History, Geological Series, 6, 600 61-66. 601 Riggs, E. S. (1934). A new marsupial saber-tooth from the Pliocene of Argentina and its 602 relationships to other South American predaceous marsupials. Transactions of the American Philosophical Society, New Series, 24(1), 1–32. 603 604 https://doi.org/10.2307/3231954 605 Sánchez-Villagra, M. R., & Asher, R. J. (2002). Cranio-sensory adaptations in small faunivorous semiaguatic mammals, with special reference to olfaction and the 606 607 trigeminal system. Mammalia, 66(1), 93–110. https://doi.org/10.1515/mamm.2002.66.1.93 608


609 Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 610 years of image analysis. Nature Methods, 9, 671–675. 611 https://doi.org/10.1038/nmeth.2089 Standring, S. (Ed.). (2016). Gray's anatomy: The anatomical basis of clinical practice 612 613 (41st ed.). Elsevier Limited. 614 https://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20110053139 Suarez, C., Forasiepi, A. M., Babot, M. J., Shinmura, T., Luque, J., Vanegas, R. D., et 615 616 al. (2023). A sabre-tooth predator from the Neotropics: Cranial morphology of Anachlysictis gracilis Goin, 1997 (Metatheria, Thylacosmilidae), based on new 617 618 specimens from La Venta (Middle Miocene, Colombia). Geodiversitas, 45(18), 619 497-572. 620 Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. 621 In J. Damuth & B. J. MacFadden (Eds.), *Body size in mammalian paleobiology* 622 estimation and biological implications (pp. 181–205). Cambridge University 623 Press. https://cir.nii.ac.jp/crid/1573950398851008640 624 Voss, R.S., & S.A. Jansa. 2009. Phylogenetic relationships and classification of 625 didelphid marsupials, an extant radiation of New World metatherian mammals. 626 Bulletin of the American Museum of Natural History, 322, 1–177. 627 Wible, J. R. (2003). On the cranial osteology of the short-tailed opossum *Monodelphis* brevicaudata (Didelphidae, Marsupialia). Annals of Carnegie Museum, 72(3), 628 629 137-202. 630 Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., & Jernvall, J. 631 (2012). Adaptive radiation of multituberculate mammals before the extinction of 632 dinosaurs. *Nature*, 483(7390), 457–460. https://doi.org/10.1038/nature10880


633	Wroe, S., & Sansalone, G. (2023). Marsupial functional morphology, biomechanics,
634	and feeding ecology. In N. C. Caceres & C. R. Dickman (Eds.), American and
635	Australasian Marsupials (pp. 1–30). Springer Nature.
636	https://doi.org/10.1007/978-3-030-88800-8_40-1
637	Wroe, S., Chamoli, U., Parr, W. C. H., Clausen, P., Ridgely, R., & Witmer, L. (2013).
638	Comparative biomechanical modeling of metatherian and placental sabertooths:
639	A different kind of bite for an extreme pouched predator. PLoS One, 8, e66888.
640	https://doi.org/10.1371/journal.pone.0066888
641	Zimicz, A. N. (2012). Ecomorfología de los marsupiales paleógenos de América del
642	Sur (doctoral dissertation, Universidad Nacional de La Plata). Available from
643	https://doi.org/10.35537/10915/29337
644	
645	Figure captions
646 647	Figure 1. Methodology used to measure the infraorbital foramen area using CT-scans
648	(see Methods). 1, section with the coronal plane (red) perpendicular to the infraorbital
649	canal at the level of the infraorbital foramen; 2, section with the axial plane (green)
650	parallel to the main axis of the infraorbital canal; 3, section with the sagittal plane
651	(yellow) parallel to the main axis of the infraorbital canal; 4, general view of a 3D
652	model of a cranium showing the orientation of the planes; 5, same as 4 with the cranium
653	in transparency and the infraorbital canal in blue.
654	Figure 2. XY plot graphics contrasting natural logarithms (ln) of: 1, infraorbital
655	foramen area (IOF _{area}) vs. Cranium size (CS; i.e., geometric mean) in Sparassodonta,
656	Marsupialia, and Carnivora (Dataset 1); 2, foramen rotundum area (FR _{area}) vs. CS in
657	Sparassodonta and selected marsupials (Dataset 3); 3, IOF _{area} vs. FR _{area} in
658	Sparassodonta and selected marsupials (Dataset 3; see methods).


659	Figure 3. Rendered views of three-dimensional models of two saber-tooth skulls
660	showing the infraorbital foramen (IOF) for comparative purposes. 1, Thylacosmilus
661	atrox holotype (FMNH P14531); 2, Smilodon populator (MACN-Pv 18057).
662	
663	TABLES
664	Table 1. Measurements from CT scans and estimations for Sparassodonta and
665	Didelphidae. Infraorbital foramen (IOF_{area}) and foramen rotundum (FR_{area}) areas are
666	shown in mm ² . Body mass (BM) was estimated through equations (Eq.) based on: (1)
667	orbital occiput length (Van Valkenburgh, 1990); and (2) M2 length (Zimicz,2012). The
668	cranium size (CS = geometric mean) and relative IOF_{area} follow Muchlinski (2010b).
669	
670	SUPPLEMENTARY ONLINE INFORMATION
671	Supplementary Figures.
672	Supplementary Tables.



Ta3 Thylacosmilus atrox MLP-PV 35-X-4-1 2. Sparassodonta In(FRarea) = 1.5989 In(CS) - 5.7334 0.5707 Cp1 Cladosictis patagonica MACN-A 5927 Marsupialia In(FRarea) = 1.3232 In(CS) - 5.3663 0.6532 Cp2 Cladosictis patagonica MPM-PV 3645 Cm Chironectes minimus MACN-Ma 24300 In(IOFarea) = 1.1399 In(FRarea) + 0.8166 0.6948 3. Sparassodonta Cp3 Cladosictis patagonica MPM-PV 4323 Dh Dasyurus hallucatus TMM M-6921 Marsupialia In(IOFarea) = 1.3406 In(FRarea) + 1.3181 0.8029 Cp4 Cladosictis patagonica MPM-PV 4326 Dv Didelphis virginiana TMM M-2517 Cp5 Cladosictis patagonica YPM-VPPU 15170 Md Monodelphis domestica AMNH 261241 Marsupialia Carnivora+Sparassodonta Ph Pharsophorus sp. MCNAM-PV 4957 Mm Marmosa murina NMB 5014 Sparassodonta Carnivora Smilodon populator Pp Prothylacynus patagonicus YPM-VPPU 15700 Tc Thylacinus cynocephalus NMB c.2526

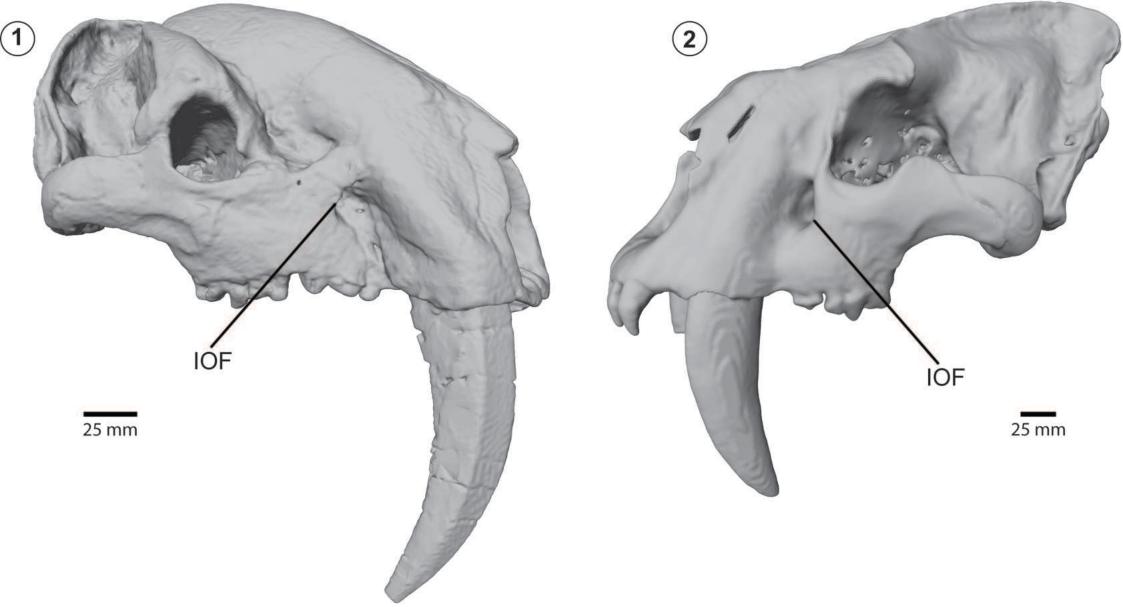


TABLE 1. Measurements from CT scans and estimations for Sparassodonta and Didelphidae. Infraorbital foramen (IOF $_{area}$) and foramen rotundum (FR $_{area}$) areas are shown in mm 2 . Body mass (BM) was estimated through equations (Eq.) based on: (1) orbital occiput length (Van Valkenburgh, 1990); and (2) M2 length (Zimicz, 2012). The cranium size (CS = geometric mean) and relative IOF $_{area}$ follow Muchlinski (2010b).

Species	Specimen	IOF _{area}	FR _{area}	FR _{area} /IOF _{area}	CS	Relative IOF _{area}	BM (kg)	Eq.	Olfactory bulbs (%)	Orbital convergence (°)
Arctodictis munizi	CORDPZ121	132.10	21.30	0.16	222.62	1.09	156.01	1	6.70	-
Arctodictis sinclairi	MLP-PV 85-VII-3-1	65.64	9.46	0.14	179.97	1.06	64.78	1	7.80	53.10
Arminiheringia auceta	MACN-A 10970-10972	59.91	-	-	-	-	29.74	2	-	-
Borhyaena tuberata	MPM-PV 3625	15.27	7.18	0.17	157.80	0.85	40.33	1	-	56.60
Borhyaena tuberata	MPM-PV 4380	36.64	6.17	0.47	184.12	0.94	59.82	1	-	58.10
Borhyaena tuberata	YPM-VPPU 15120	54.88	9.88	0.18	163.00	1.07	47.74	1	5.70	-
Callistoe vincei	PVL 4187	52.33	27.50	0.53	179.93	1.01	22.28	2	8.80	-
Cladosictis patagonica	MACN-A 5927	12.64	5.46	0.43	128.52	0.90	6.53	2	4.50	86.10
Cladosictis patagonica	MPM-PV 3645	12.45	4.95	0.40	108.45	0.99	6.72	2	4.10	76.90
Cladosictis patagonica	MPM-PV 4323	8.79	4.56	0.52	98.31	0.96	11.00	1	5.30	49.40
Cladosictis patagonica	MPM-PV 4326	10.26	7.02	0.68	105.51	0.96	5.30	2	3.90	59.40
Cladosictis patagonica	YPM-VPPU 15170	19.88	-	-	108.79	1.09	5.22	2	4.50	-
Patagosmilus goini	MLP-PV 07-VII-1-1	45.46	-	-	-	-	19.79	2	-	-
Pharsophorus sp.	MCNAM-PV 4957	73.25	-	-	-	-	75.07	1	-	-
Prothylacynus patagonicus	MACN-A 5931-5932	-	-	-	130.03	-	25.95	2	5.80	-
Prothylacynus patagonicus	YPM-VPPU 15700	35.96	9.51	0.26	-	-	21.47	2	5.30	-
Sipalocyon externus	MACN-Pv CH1911	6.73	2.62	0.39	-	-	2.27	2	5.80	60.70
Sipalocyon gracilis	AMNH-VP 9254	11.37	4.49	0.39	83.15	1.13	3.06	2	5.80	54.30
Sipalocyon sp.	MPM 4316	5.57	-	-	-	-	2.55	2	5.60	59.50
Thylacosmilus atrox	FMNH P14531	77.88	20.90	0.27	192.55	1.06	69.55	1	3.20	34.80
Thylacosmilus atrox	MMP 1443-M	34.42	16.95	0.49	151.37	1.02	35.11	1	6.40	30.70
Thylacosmilus atrox	MLP-PV 35-X-4-1	33.55	16.90	0.50	-	-	33.87	1	-	-
Chironectes minimus	MACN-Ma 24300	1.63	0.20	0.13	52.09	0.89	0.83	2	4.30	46.80
Dasyurus hallucatus	TMM M-6921	2.21	1.16	0.52	45.65	1.01	0.87	2	8.00	46.60
Didelphis virginiana	TMM M-2517	6.53	1.60	0.25	75.27	1.09	2.86	2	11.00	50.90
Marmosa murina	NMB 5014	0.48	0.35	0.57	21.70	0.87	0.05	2	-	-
Monodelphis domestica	AMNH 261241	0.86	0.49	0.72	27.01	0.95	0.12	2	10.92	43.41
Thylacinus cynocephalus	NMB c.2526	79.44	6.04	0.08	172.97	1.39	20.56	2	6.15	63.80