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Abstract. The octodontoid rodent Acarechimys was abundant during the early Miocene and had the widest temporal and geographic distribu-
tion of any extinct caviomorph. Despite this extensive fossil record Acarechimys has not been well characterized. In this work, we systematically
revise Acarechimys, describe new early–middle Miocene fossils from Argentina and Bolivia, corroborate its monophyly, and study its evolu-
tionary history. Acarechimys has brachydont molars, retained deciduous premolars, four crests on upper molars, lowers with variably developed
mesolophid and metalophulid II, and absence of mental foramen in the mandible. Acarechimys includes: Acarechimys leucotheae (late Oligocene,
Chubut, Argentina), A. gracilis and A. constans (early Miocene, Chubut and Santa Cruz, Argentina), and A. minutus and A. minutissimus (early–
middle Miocene of Patagonia Argentina, Bolivia, and Colombia). The temporal and geographic distributions suggest that Acarechimys could have
evolved in Patagonia, by the early late Oligocene. Its acme was during the late early Miocene in Southern Patagonia. By the middle Miocene,
Acarechimys decreased in diversity and was last recorded in high latitudes of South America (Patagonia). In lower latitudes, the oldest record
is from the late early Miocene of Chucal, northern Chile, and during the late middle Miocene, the genus is recorded in localities of Colom-
bia, Bolivia, and Peru. The available evidence suggests that Acarechimys was probably not present in lower latitudes (N of ~ 30° S) before the
early Miocene. The reasons Acarechimys dispersed northward at this time remain to be elucidated, but the timing coincides with a massive
disappearance of other octodontoids from Patagonia.

Key words. Octodontoid. Oligocene. Miocene. South America. Evolutionary history.

Resumen. REVISIÓN SISTEMÁTICA E HISTORIA EVOLUTIVA DE ACARECHIMYS PATTERSON EN KRAGLIEVICH, 1965 (RODENTIA, CAVIOMORPHA,
OCTODONTOIDEA). El roedor octodontoideo Acarechimys fue abundante durante el Mioceno temprano y tuvo la distribución geográfica y tem-
poral más amplia para un caviomorfo viviente. A pesar de su amplio registro fósil Acarechimys nunca fue caracterizado correctamente. En este
trabajo, realizamos la revisión sistemática de Acarechimys, describimos nuevos materiales del Mioceno temprano–medio de Argentina y Bo-
livia, corroboramos su monofilia y estudiamos su historia evolutiva. Acarechimys presenta dientes braquiodontes, retención de premolares
deciduos, cuatro crestas en molares superiores, desarrollo variable del mesolófido y el metalofúlido II en molares inferiores y ausencia de fora-
men mentoniano en la mandíbula. Acarechimys incluye: Acarechimys leucotheae (Oligoceno tardío, Chubut, Argentina), A. gracilis y A. constans
(Mioceno temprano, Chubut y Santa Cruz, Argentina), y A. minutus y A. minutissimus (Mioceno temprano–medio de Patagonia Argentina, Bolivia
y Colombia). Su distribución temporal y geográfica sugiere que Acarechimys habría evolucionado en Patagonia en el Oligoceno tardío-temprano.
Su acmé fue en el Mioceno temprano-tardío en el sur de Patagonia. Para el Mioceno medio Acarechimys disminuyó su diversidad y tiene su
último registro en latitudes altas de América del Sur (Patagonia). En latitudes bajas, el registro más antiguo proviene del Mioceno temprano-
tardío de Chucal, norte de Chile, y durante el Mioceno medio se lo registra en localidades de Colombia, Bolivia y Perú. La evidencia disponi-
ble sugiere que Acarechimys probablemente no estuvo presente en bajas latitudes (N de 30ºS) antes del Mioceno temprano. Las causas de su
dispersión hacia el norte deben ser todavía estudiadas, aunque la misma coincide con la desaparición masiva de octodontoideos en Patagonia.

Palabras clave. Octodontoideo. Oligoceno. Mioceno. América del Sur. Historia evolutiva.
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ACARECHIMYS is an extinct rodent genus, part of the richest

and most diverse clade of caviomorphs: Octodontoidea. It

represents a successful evolutionary lineage with unusually

wide temporal (late Oligocene–late Miocene) and geo-



graphic distributions (southern Argentinean Patagonia to

Colombia); it was one of the most abundant octodontoids

during the Burdigalian (late early Miocene; Santacrucian

South American Land Mammal Age, SALMA; Pascual et al.,

1965) of Santa Cruz Province, Argentina.

Ameghino (1887), while working at the Museo de La

Plata (MLP), erected the genera Acaremys, Stichomys, and

Sciamys, and recognized the species: Acaremys minutus, A.

minutissimus, Sciamys tenuissimus, and Stichomys constans.

Subsequently, he named additional species of these genera

(Ameghino, 1889, 1891, 1894). Scott (1905) performed an

exhaustive revision of the rodents from the Santa Cruz

Formation based on fossils collected by the Princeton Ex-

peditions to Patagonia (1896–1899; housed at the Yale

Peabody Museum, New Haven, USA) and the collections

housed in the museums of Buenos Aires and La Plata that

he visited in 1902. As a result, he described additional ma-

terials and performed detailed descriptions of Acaremys

minutus, A. minutissimus, Sciamys tenuissimus, Stichomys

constans, and Stichomys diminutus. Bryan Patterson studied

the paleontology collections deposited at the MLP and

MACN in the years 1952–1954 (Olson, 1985) and per-

formed an exhaustive investigation of caviomorphs that

was never published. Nevertheless, in his unpublished

manuscript (UMS, available at the Vertebrate Paleontology

Section, MACN), Patterson provided information that was

later used by Pascual (1967) and by the authors of this work

(see below). The genus Acarechimys was first mentioned by

Kraglievich (1965) in a footnote, explaining: ‘Ce nom, inédit, a

été appliqué par B. Patterson à l’espèce Acaremys minutus

Amegh. (Patterson et Kraglievich, ms.)’. Later, based on Patter-

son UMS, Pascual (1967) mentioned the genus Acarechimys

with the species Acarechimys minutus, Acarechimys minutis-

simus, and Acarechimys constans, and provided collection

numbers of the lectotype of each species. Finally, Patterson

(in Patterson and Wood, 1982) characterized the genus

Acarechimys for the Santacrucian SALMA of Patagonia, with

Acarechimys minutus as the type species (synonym: Sti-

chomys gracilis Ameghino, 1891) and Acarechimys minutis-

simus as the only other referred species (synonyms:

Stichomys diminutus Ameghino, 1891, Sciamys tenuissimus

Ameghino, 1894, and provisionally Stichomys constans

Ameghino, 1887). Since the 1990s, the genus Acarechimys

has been recognized at numerous localities beyond Santa

Cruz Province: Vucetich et al. (1993a) extended its biochron

by describing Acarechimys sp. from the Langhian (early

middle Miocene, Colloncuran SALMA) of Neuquén Province,

Argentinean Patagonia; Walton (1997) identified Acare-

chimys cf. A. minutissimus from the Serravallian (late middle

Miocene, Laventan SALMA) of La Venta, Colombia, and Croft

et al. (2011) described new specimens of Acarechimys from

the Serravallian (late middle Miocene, Laventan SALMA) of

Quebrada Honda, Bolivia. Flynn et al. (2002, 2008) and Croft

et al. (2007) mentioned Acarechimys for the early to middle

Miocene of Chile, Antoine et al. (2016) for the early Miocene

of Contamana, Peru, Tejada-Lara et al. (2015) for middle

Miocene of the Fitzcarrald Arch in the Peruvian Amazonia,

and Esteban et al. (2014) for late Miocene–early Pliocene of

the Andalhuala and Chiquimil formations in Catamarca

Province, Argentina.

Vucetich et al. (2010) transferred the species Protacare-

mys pulchellus Ameghino, 1902 to Acarechimys, erecting the
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Figure 1. Dental and mandibular nomenclature used in this work. 1,
upper cheek teeth: Al, anteroloph; H, hypocone; M, metacone; Mel,
metaloph; Mr, mure; P, protocone; Pa, paracone; Prl, protoloph; Psl,
posteroloph; 2, lower cheek teeth: ac, accessory cusp; ecd, ectolophid;
et, entoconid; hd, hypoconid; hld, hypolophid; md, metaconid; med I,
metalophulid I; med II, metalophulid II; msd, mesolophid; pamd,
posterior arm of the metaconid; pemed  I, posterior extension of the
metalophulid I; prd, protoconid; psd, posterolophid; 3, mandible: cor,
coronoid process; d, diastema; mac, masseteric crest; maf, masse-
teric fossa; mf, mental foramen; nmmpio, notch for the insertion of
the masseter muscle, pars infraorbitalis.



new combination Acarechimys pulchellus (Ameghino, 1902)

for the Aquitanian–Burdigalian (early Miocene, Colhue-

huapian SALMA) of Patagonia. This taxonomic assignation

was corroborated later by Arnal (2012) with a cladistic

analysis. Vucetich et al. (2015a) described the most ancient

species of the genus, Acarechimys leucotheae, from the

Chattian (late Oligocene, Deseadan SALMA c.a. 29.4–24.2

Ma) of Cabeza Blanca, Chubut Province, Argentina. Recently,

Verzi et al. (2016) reviewed and revised specimens included

in this genus.

In this contribution, we review nearly all of the material

hitherto assigned to Acarechimys, and describe new speci-

mens with precise geographic and stratigraphic prove-

nance from the Santa Cruz Formation (late early Miocene of

Santa Cruz Province, Argentina), Collon Curá Formation

(early middle Miocene of Neuquén Province, Argentina), and

an unnamed formation in southern Bolivia (late middle

Miocene of Quebrada Honda).

MATERIALS AND METHODS

A total of 127 specimens were studied (Supplementary

appendix 1). Dental nomenclature follows Marivaux et al.

(2002), Candela and Rasia (2012), and Arnal et al. (2014).

Mandibular and cranial nomenclature follows Wible et al.

(2005) and Woods and Howland (1979) (Fig. 1).

Institutional abbreviations. MACN-A, Museo Argentino de

Ciencias Naturales ‘Bernardino Rivadavia’, Ameghino Na-

tional Collection, Buenos Aires, Argentina; MACN-PV,

Museo Argentino de Ciencias Naturales ‘Bernardino Riva-

davia’, Vertebrate Paleontology Collection, Buenos Aires,

Argentina; MLP, Museo de La Plata, La Plata, Argentina;

MPM-PV, Museo Regional Provincial ‘Padre Manuel Jesús

Molina’, Vertebrate Paleontology Collection, Santa Cruz, Ar-

gentina; UATF-V, Universidad Autónoma Tomás Frías, Ver-

tebrate Paleontology Collection, Potosí, Bolivia; YPM-VPPU,

Princeton University Collection of the Yale Peabody Mu-

seum, New Haven, USA.

Systematic revision. Recognition of the type series used by

Florentino Ameghino (1887, 1889) was necessary to iden-

tify the specimens recovered by Carlos Ameghino during his

fieldtrip of 1887 in the cliffs of the Santa Cruz River, Santa

Cruz province, Argentina (Fig. 2). In performing this investi-

gation, we took into account different sources of informa-

tion: Ameghino’s catalog at the MACN, the MLP catalog,

Patterson’s UMS, collection labels and file cards, and the

account of the history of the conflict between F. Ameghino

and Moreno when the Santacrucian species were erected

(Fernicola, 2011). Patterson studied the paleontology

collections deposited at the MLP and MACN, but identified

lectotypes and syntypes of fossils housed at the MLP [infor-

mation that was published by Pascual (1967)]. Patterson

mentioned and studied specimens figured by Ameghino

(1889) and deposited at the MACN but dismissed the possi-

bility that they might be holotypes because he believed that

the fossils collected by C. Ameghino in 1887 were deposited

exclusively at the MLP (UMS, pers. comm.). Fernicola (2011)

determined that those fossils figured in the Atlas by

Ameghino (1889) and housed in the MACN were collected

by his brother Carlos in 1887, and therefore these fossils

could be part of the type series of taxa founded in 1887 by

F. Ameghino. Additionally, we have inferred that Patterson

may have had access to labels with Ameghino’s hand-

writing and other certain provenance information, since his

UMS stresses differences among ‘labeled materials’, ‘im-

properly labeled materials’, and ‘materials that agree with

Ameghino’s original descriptions’. Thus, with some excep-

tions (see below), we accept the information provided by

Patterson in his unpublished manuscript and discuss the

implications for each particular species.

Statistical analyses. In order to test for size differences

among Acarechimys species, we performed statistical

analyses using m1 and m2 length, as these allowed for the

largest sample sizes. Sixty-nine m1 and 62 m2 measure-

ments were used in the analyses. Statistical analyses were

performed using JMP Pro (SAS Institute, Inc., 2013).

Cladistic analysis. In order to test the monophyly of the

genus, we used an expanded and modified version of the

data matrix of Arnal and Vucetich (2015) (Supplementary

appendices 2 and 3). In total, it consists of 186 morpho-

logical characters and 59 taxa. These include 19 morpho-

logical characters from Verzi et al. (2016) that were added in

order to evaluate comparable data matrices. The living

Abrocoma was included in order to test whether some

Acarechimys species group within Abrocomidae. The data

matrix was analyzed under equally weighted parsimony

using TNT 1.5 (Goloboff and Catalano, 2016). A heuristic

search of 1,000 replications of Wagner trees (with random

addition sequence) followed by Tree Bisection and Recon-
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nection (TBR) branch-swapping algorithm (holding 10 trees

per replicate) was conducted. The best trees obtained at the

end of the replicates were subjected to a final round of TBR

branch swapping. Thirty-one characters were treated as

ordered. The robustness of the obtained MPTs was calcu-

lated with relative and absolute Bremer supports (Bremer,

1994; Goloboff and Farris, 2001).

SYSTEMATIC PALEONTOLOGY

Order RODENTIA Bowditch, 1821

Suborder HYSTRICOGNATHI Tullberg, 1899

Parvorder CAVIOMORPHA Wood, 1955

Superfamily OCTODONTOIDEA Waterhouse, 1839

Genus Acarechimys Patterson in Kraglievich, 1965

Type species. Acaremys minutus Ameghino, 1887.

1887. Stichomys Ameghino, partim. p. 10.
1887. Sciamys Ameghino, partim. p. 312.
2016. Ameghinomys Verzi, Olivares and Morgan, pp. 412-413.

Stratigraphic and geographic occurrences. Upper levels of the

Sarmiento Formation at Cabeza Blanca (Chubut, Argentina),

late Oligocene, Deseadan SALMA (Vucetich et al., 2015 a);

Sarmiento Formation (Chubut, Argentina), early Miocene,

Colhuehuapian SALMA (Vucetich et al., 2010); Pinturas For-

mation (Santa Cruz, Argentina), late early Miocene, ‘Pintu-

ran’ age (Kramarz and Bellosi, 2005); Santa Cruz Formation,

(Santa Cruz, Argentina), late early Miocene, Santacrucian

SALMA (Ameghino, 1887, 1889; Scott, 1905; Vizcaíno et al.,

2012); Chucal Formation (Región XV, Chile), late early

Miocene, Santacrucian SALMA (Croft et al., 2007); unnamed

formation (Pampa Castillo, Región XI, Chile), late early

Miocene, Santacrucian SALMA (Flynn et al., 2002); Curá

Mallín Formation (Región VIII, Laguna del Laja, Chile), early

to middle Miocene (Flynn et al., 2008); Collon Curá Forma-

tion (Neuquén, Argentina), early middle Miocene, Colloncu-

ran SALMA (Vucetich et al., 1993a); Villavieja Formation

(Colombia), late middle Miocene, Laventan SALMA (Walton,

1997); unnamed formation (Quebrada Honda, Bolivia), late

middle Miocene, Laventan SALMA (Croft et al., 2011); un-

specified formation, Fitzcarrald Arch (Peru), middle Miocene,

Laventan SALMA (Negri et al., 2010; Tejada-Lara et al.,

2015); Pebas Formation, Contamana (Peru), late? Miocene

(Antoine et al., 2016).

Emended diagnosis [from Vucetich et al. (2015a); autapo-

morphies marked with an asterisk]. Small to very small

sized caviomorph. Brachydont cheek teeth* (see Phyloge-
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Figure 2. Map showing fossil localities where Acarechimys has been
found or mentioned. 1, Cabeza Blanca, Chubut, Argentina; 2, Gran
Barranca, Chubut, Argentina; 3, Río Pinturas Valley, Santa Cruz, Ar-
gentina; 4, coastal localities of the Santa Cruz Formation, Santa Cruz,
Argentina; 5, localities at the cliffts of the Río Santa Cruz, Santa Cruz,
Argentina; 6, Pampa Castillo, Región XI, Chile; 7, Chucal Formation,
Región XV, Chile; 8, Laguna del Laja (Curá Mallín Formation), Región
VIII, Chile; 9, Cañadón del Tordillo, Neuquén, Argentina; 10, El Petiso,
Chubut, Argentina; 11, Huemules River (Río Mayo Formation), Chu-
but, Argentina; 12, Quebrada Honda, Bolivia; 13, La Venta, Colombia;
14, Fitzcarrald Arch, Peru; 15, Puerta de Corral Quemado y Villavil
(Andalhuala and Chiquimil formations), Argentina. A, B, and C refer
to dismissed mentions of Acarechimys (A, Chichinales Formation, Río
Negro, Argentina; B; Madre de Dios Formation, Peru; C; Pebas For-
mation, Peru).



netic Analysis, below). Clearly evident cusps and thin crests

separated by wide flexids. Retention of deciduous premo-

lars throughout life. Upper molars with four straight crests

(anteroloph, protoloph, metaloph, and posteroloph); antero-

and posteroloph fused labially in juveniles with proto- and

metaloph delimiting the antero- and metafossette, respec-

tively. Lower molars with variably developed metalophulid

II: interrupted or absent on m1-m2, absent or interrupted

on m3; presence of accessory cusp on lowers molars*.

Lower deciduous premolar with variably developed metalo-

phulid II and mesolophid united with or near the metaconid.

Lower incisor long, with its posterior end located posterior

to m3. Well-developed masseteric crest of the mandible,

mental foramen generally absent, and masseteric fossa

moderately to very deep anteriorly. Skull with a moderately

developed groove for the passage of the nerve infraor-

bitalis*.

Acarechimys minutus (Ameghino, 1887)

Figure 3.1–5

1887. Acaremys minutus Ameghino, p. 9.
2016. Ameghinomys constans Verzi, Olivares and Morgan, pp. 412-413.

Type series.MLP 15-410a, left mandible with m1-3; MACN-

A 237, right mandible with dp4-m3; MACN-A 238, right

mandible with dp4-m3; MACN-A 4075, right mandible with

dp4-m1.

Lectotype. MLP 15-410a Patterson (UMS, pers. comm.) and

Pascual, 1967.

Paralectotypes. MACN-A 237, MACN-A 238, MACN-A 4075.

Referred material. (Supplementary appendix 1).

Geographic and stratigraphic occurrences. Santa Cruz and

Neuquén provinces, Argentina; Quebrada Honda, Bolivia.

Santa Cruz Formation, late early Miocene, Santacrucian

SALMA; Collon Curá Formation, early middle Miocene, Collon-

curan SALMA; unnamed formation, late middle Miocene,

Laventan SALMA (Supplementary appendix 1).

Emended diagnosis. Smaller than A. constans and A. gracilis.

Upper deciduous premolar tending toward reduction and

loss of the metaloph, unlike A. constans. Lower deciduous

premolar with variably developed metalophulid II and

mesolophid, a combination not present in the remaining

species. Lower molars with metalophulid II reduced to a

small spur on m1-2 and absent on m3, as in A. leucotheae;

presence of accessory cups in m1-2 and variable presence

of the posterior extension of the metalophulid I in m1-2;

presence of posterior arm of the metaconid on m1-3, as in

A. gracilis. Lower incisors laterally compressed, unlike A.

constans and A. gracilis. Mandible with the notch for the in-

sertion pars infraorbitalis of the masseter muscle (nmmpio)

located below dp4-m1, unlike A. constans and A. gracilis.

Remarks. MLP 15-410a (left mandible with m1-m3) is la-

beled as ‘lectotype’ and MLP 15-410b (maxilla with right

and left M1-M3) as ‘type?’ of Acarechimys minutus in the

MLP collection. Based on the catalog information of this

museum, we confirm that both specimens belong to the ‘old

collections’, which include specimens from the expedition

of C. Ameghino in 1887 and expeditions performed by

other staff of the MLP in subsequent years (Vizcaíno et al.,

2013). Unfortunately, the available information does not

allow us to know which of these fossils were recovered by

C. Ameghino (no labels or catalog written by Ameghino are

available). However, according to the unpublished work of

Patterson, MLP 15-410a is the lectotype of Acarechimys

minutus since ‘in fact the only specimen labeled as minutus

or attributable to the species is M.L.P. nº15-410a, a portion

of left ramus with base of I, roots of dm4, m1-3. This indi-

vidual thus becomes the lectotype’. Thus, based on the

confirmation made by Patterson, we interpret that MLP 15-

410a could have had a label made by F. Ameghino. On the

contrary, we think that MLP 15-410b was not available for

Patterson in the 1950s, since in his UMS he stated that the

palatal fragment described by Ameghino for this species

was lost. Only later was MLP 15-410b relocated and

available for study in the MLP collections. We believe that

this took place after the accession of fossils belonging to

old assemblages into the MLP collections, an occurrence

that has taken place many times since the 1960s (Reguero

and Tonni, pers. comm., 2016). The specimen file card of

MLP 15-410b includes a note by R. Pascual that it possibly

corresponds to the palatal fragment used by Ameghino in

1889 for the description of Acaremys minutus (handwriting

by Pascual). We agree with Pascual that this specimen

matches Ameghino’s description; nevertheless, there is no

evidence that it was part of the collection studied by

Ameghino. Therefore, we have not included MLP 15-410b

among the syntypes of Acarechimys minutus. We recognize

three additional specimens housed at the MACN collection

as part of the original type series: MACN-A238 and MACN-
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A 4075, which are illustrated in the atlas of Ameghino

(Ameghino, 1889; plate IV, figs. 22–23), and MACN-A 237,

which is mentioned in the catalog of Ameghino (MACN) as

being a member of the same stock as MACN-A238. In

summary, we identify four fossils used by F. Ameghino to

erect the species Acaremys minutus: MLP 15-410a, MACN-

A237, MACN-A 238, and MACN-A 4075.

Pascual (1967) stated that MLP 15-410a was the lec-

totype of Acarechimys minutus. Although this material

corresponds to an old specimen with the occlusal surface

very worn, we agree with Patterson’s assignation. By de-

fault, the remaining specimens of the original type series

are paralectotypes.

Based on dental morphology (symmetric absence of

mure on the M2 delimiting an antero- and posterofossette

and a relatively large and fully tetralophodont M3) we can-

not assign MLP 15-410b to any recognized caviomorph

species. It probably represents a new octodontoid (Arnal

and Vucetich, personal observation) and will be the subject

of future investigations.

Description. Both upper tooth rows are parallel to each other

but are obliquely implanted with respect to the palatal plane.

The upper cheek teeth are wider than long (Tab. 1),

slightly terraced, and tetralophodont. Molars have a long

anteroloph that reaches the paracone and delimits an an-

terofossette in juvenile specimens (Fig. 3.1). The protoloph

is anteriorly oblique and curved. The metaloph departs from

the junction of the mure and the anterior arm of the

hypocone, and its labial end, which includes the metacone,

turns back to fuse with the posteroloph, delimiting a

metafossette in juveniles (Fig. 3.1). The M3 has a labially

placed hypocone, and a hypofossette is formed in adult

specimens (Fig. 3.1). The anterofossette and metafossette

are equally deep and extend further across the occlusal sur-

face than the mesoflexus. The hypoflexus is the deepest

flexus and is anteriorly oriented.

The DP4 is molarized and resembles the molars but

usually differs in the presence of a reduced metaloph that

does not reach the labial end of the posteroloph, by the

presence of a short protoloph that does not reaches the

paracone, and by a less oblique protoloph and hypoflexus

(Fig. 3.1).

Upper incisors are oval in section. The anterior face is

straight and the lingual face is curved.

The description of the skull is based on an almost com-

plete skull (YPM-VPPU 15806; Fig. 3.2) and maxillary frag-

ments (MACN-A 4070, MPM-PV 15088). The nasals extend

posteriorly to the dorsal root of the zygoma. Posteriorly, the

frontal bones have concave lateral margins. The premaxillae

occupy the anterior half of the lateral wall of the snout

(Fig. 3.2); the ascending processes of the premaxillae are

slightly exposed on the skull roof and are a little longer than

the nasals, unlike in Acaremys murinus, in which they are

broadly exposed on the skull roof. The rostral masseteric

fossa (sensu Patterson and Wood, 1982) is shallow, sub-

triangular, and limited ventrally by the incisor tuberosity

(Fig. 3.2), unlike in Acaremys murinus, Pseudoacaremys kra-

marzi, and Sciamys principalis, in which the incisor tuberosity

is included in the rostral masseteric fossa (Arnal and Vuce-

tich, 2015). The dorsal root of the zygoma continues ven-

trally with a robust vertical ramus of the zygoma, similar to

Sciamys principalis (Fig. 3.2). This vertical ramus is mainly

straight, as in Prospaniomys priscus, rather than posteriorly

oblique as in most octodontoids (Arnal and Kramarz, 2011).

The ventral root of the zygoma extends slightly in front of

the DP4 (Fig. 3.2), and its antero-posterior diameter is

similar to its dorso-ventral diameter, unlike Pseudoacaremys

kramarzi, where the antero-posterior diameter is twice the

dorso-ventral one (Arnal and Vucetich, 2015). In ventral

view, the masseteric tuberosity (for the origin of the mas-

seter superficialis muscle, pars anterior) is conspicuous and

continuous laterally with a shallow fossa for the origin of

the masseter lateralis muscle. Posterior to the masseteric

tuberosity is a small foramen of uncertain homology. On

the dorsal face of the ventral root of the zygoma is a faint

furrow for the passage of the infraorbitalis nerve. The hori-

zontal ramus of the zygoma is high in lateral view (Fig. 3.2),

unlike Prospaniomys priscus in which it is low (Arnal and Kra-

marz, 2011). It is formed mainly by the jugal bone, which lies

at the base of the vertical ramus of the zygoma along with

the maxillary bone (Fig. 3.2); this suture is straight and

oblique. The paraorbital process is conspicuous and formed

by the jugal and a small portion of the squamosal. The jugal

fossa (for the origin of the posterior masseter muscle) is

well-developed; it is antero-posteriorly long, dorso-ven-

trally high, and medio-laterally deep, unlike Prospaniomys

priscus, in which it is short and shallow.

The diastema is longer than the tooth row and widens
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Table 1 – Acarechimys dental measurements. 

A. minutus MACN-A 237 MACN-A 4070 MACN-A 4073 MLP 15-410a MPM-PV 15039

apl mw apl mw apl mw apl mw apl mw

dp4 1.62 1.30 1.56 1.18 - - 1.44 1.22

m1 1.57 1.52 1.46 1.39 - 1.58 1.48 1.40

m2 1.58 1.48 1.50 1.49 1.62 1.62 1.42 1.38

m3 1.24 1.40 - - 1.56 1.58 - -

DP4-M3 6.92 -

DP4 1.62 1.90

M1 1.84 2.06

M2 1.90 2.10

M3 1.56 1.84

A. constans MLP 15-391 MACN-A 247a MACN-A 247b MPM-PV 15002 MPM-PV 15092

apl mw apl mw apl mw apl mw apl mw

dp4 2.22 1.64 - - 2.36 1.64 - 1.56 2.33 1.53

m1 2.00 1.88 2.20 2.01 2.30 2.08 2.12 1.82 1.97 1.67

m2 2.01 1.94 2.36 2.16 2.20 2.16 - - 1.94 1.96

m3 1.92 1.76 - - - - - - - -

DP4-M2 5.04 -

DP4 1.46 1.78

M1 1.78 2.01

M2 1.80 2.20

A. leucotheae MPEF-PV 10677

apl mw

dp4 - 1.02

m1 1.38 1.34

m2 1.48 1.34

m3 1.20 1.18

A. minutissimus MACN-A 258 MACN-A 1894 MACN-A 12683 MLP 15-1

apl mw apl mw apl mw apl mw apl mw

dp4 1.22 1.11 1.51 1.12 1.41 1.19 1.32 1.12

m1 1.25 1.26 1.41 1.30 1.43 1.34 1.26 1.28

m2 1.46 1.46 1.43 1.31 1.40 1.32 1.30 1.30

m3 1.28 1.21 1.20 1.20 - - 1.00 1.12

DP4-M2 3.96 -

DP4 1.30 1.30

M1 1.28 1.46

M2 1.38 1.53

A. gracilis MACN-A 52-128 MACN-A 4060 MACN-A 4263 MLP 15-391a MPM-PV 17430

apl mw apl mw apl mw apl mw apl mw

dp4 1.88 1.54 2.32 1.70 1.76 1.48 1.90 1.59 2.08 1.54

m1 1.96 1.74 2.10 1.98 1.91 1.89 1.81 1.84 2.15 1.87

m2 2.01 1.89 2.34 2.10 1.93 1.79 1.98 1.96 2.10 2.03

m3 1.82 1.68 2.16 1.78 - - - - 1.86 1.57

Abbreviations: apl, antero-posterior length; mw, maximum width.



posteriorly but is shorter than in Acaremys murinus and

Pseudoacaremys kramarzi. The large incisive foramina are

damaged but seem to be wider than long. Posteriorly, they

are continuous with the well-developed diastemal furrows

that extend to the DP4s. The posterior palatine foramina are

conspicuous and located between the M1s. The openings

of the posterior nares are positioned near the posterior

half of the M2.

Lower cheek teeth are of similar size (Tab. 1). The dp4 is

longer than wide (Fig. 3.3; Tab. 1). The metalophulid I is

curved and joins the protoconid and metaconid. The ec-

tolophid is relatively short and oblique. A short but variably

developed metalophulid II extends from the postero-lingual

border of the protoconid (Fig. 3.3–4) as in some specimens

of A. minutissimus and A. constans. The mesolophid is also

variably developed; it varies from long and fused with the

metaconid (MPM-PV 15089), as in A. constans, to reduced,

forming a spur of the ectolophid, as in A. gracilis (Fig. 3.3).

The hypolophid is straight and merges with the entoconid.

The posterolophid is long and reaches the labial side of the

tooth. The anterofossettid/anteroflexid is rounded, shallow,

and merged with the mesoflexid when the mesolophid is

reduced (Fig. 3.3–4). The posteroflexid is closed in adult

specimens. The hypoflexid is the deepest flexid and is pos-

teriorly oblique. In adult specimens, the dp4 becomes sim-

plified with an oval outline (MACN-A 4071).

The lower molars have three main crests; a fourth crest,

second in position (metalophulid II), is variably developed

(Fig. 3.3). The metalophulid I is straight, unlike in A. constans

and A. gracilis, where it is curved. The metalophulid II is re-

duced to a spur of the ectolophid near the area of the pro-

toconid in m1-2 and is absent in m3 (Fig. 3.3). An accessory

cusp of uncertain homologies is lingually aligned with this

crest and often united to the metalophulid I by a posterior

extension of the metalophulid I (Fig. 3.3). The posterior arm

of the metaconid is present in m1-3. The hypolophid and

posterolophid are as in dp4. The lingual end of the pos-

terolophid lies near the entoconid, unlike in the dp4. The an-

tero+mesoflexid is as broad and deep as the posteroflexid.

The lower incisors are laterally compressed and long,
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Figure 3. Acarechimys minutus; 1, MPM-PV 15088, left DP4-M3 (reversed); 2, YPM-VPPU 15806, right lateral view of the skull; 3, MACN-A
237, right dp4-m3 (paralectotype); 4, MLP 91-IX-1-97, right dp4; 5, MPM-PV 15089, external view of right mandible. Abbreviations: ac,
accessory cusp; Al, anteroloph; drz, dorsal root of the zygoma; hramus, horizontal ramus of the zygoma; mac,masseteric crest; maf, masseteric
fossa; Mel, metaloph; med II, metalophulid II; mx-j, maxillary-jugal; nmmpio, notch for the insertion of the masseter muscle, pars infra-
orbitalis; pamd, posterior arm of the metaconid; pemed I, posterior extension of the metalophulid I; pmx-mx, premaxillary-maxillary; Prl,
protoloph; Psl, posteroloph; rmf, rostral masseteric fossa; vramus, vertical ramus of the zygoma; vrz, ventral root of the zygoma. Scale
bars= 2mm.



extending below the tooth row to the base of the coronoid

process.

The mandible is robust. The diastema is shorter than the

tooth row, unlike the condition in the cranium. The diastema

is concave, and the lowest part is immediately anterior to

the dp4 (Fig. 3.5). A mental foramen is generally absent;

when present, it is small and located below the anterior half

of dp4. The nmmpio is conspicuous, antero-posteriorly long,

slightly oblique, and the anterior half is located mainly below

the dp4 (Fig. 3.5), as in A. minutissimus. The masseteric crest

is well-developed, laterally projecting, and ventro-poste-

riorly oriented (Fig. 3.5). The masseteric fossa is deep in its

anterior part as in A. gracilis but shallower than in species of

Acaremys. This fossa is antero-dorsally limited by a faint

furrow that extends from the posterior border of the nmm-

pio to the base of the coronoid process. The coronoid

process extends postero-laterally from the m2 and delimits

a retromolar fossa lateral to m3. On the lingual side of the

mandible, the mandibular symphysis extends posteriorly to

the posterior border of m1. The mandibular chin is at the

level of the dp4.

Acarechimys constans (Ameghino, 1887)

Figure 4 1–4

1887. Stichomys constans Ameghino, p. 10.
2016. Acarechimys pascuali Verzi, Olivares and Morgan, partim., pp.

414-415; 417; 420.
2016. Ameghinomys constans Verzi, Olivares and Morgan, partim.,

pp. 412-413.

Type series. MACN-A 246, palatal fragment with left and

right DP4-M2; MACN-A 247, left mandible with m1-2 and

right mandible with dp4-m2;MLP 15-39, left mandible with

m1-3; MLP 15-57, right mandible with m2-3 and broken

m1; MLP 15-200, right mandible with dp4-m2; MLP 15-346,

left mandible with dp4-m2; MLP 15-391, right mandible

with dp4-m3; MLP 15-391a, right mandible with dp4-m2;

MLP 15-391b, right mandible with m1-3; MLP 15-391c, left

mandible with broken dp4-m1.

Lectotype. MLP 15-391 Patterson (UMS, pers. comm.) and

Pascual (1967).

Paralectotypes. MACN-A 246, MACN-A 247, MLP 15-39,

MLP 15-57, MLP 15-200, MLP 15-346, MLP 15-391a, MLP

15-391b, MLP 15-391c.

Referred material. (Supplementary appendix 1).

Geographic and stratigraphic occurrence. Santa Cruz Province.

Santa Cruz Formation, late early Miocene, Santacrucian

SALMA (Supplementary appendix 1).

Diagnosis. Larger than A. minutus, A. minutissimus, and A.

leucotheae. Lower deciduous premolars with well-developed

or reduced metalophulid II; mesolophid conspicuous, unlike

in A. gracilis. Lower molars with metalophulid II well-de-

veloped on m1 and reduced or absent on m2–3, unlike A.

minutus and A. minutissimus; accessory cusp on m1 variable

present and conspicuous posterior arm of the metaconid

absent, unlike A. gracilis. Lower incisors not compressed

medio-laterally, unlike A. minutus and A. minutissimus.

Mandible with the masseteric fossa and nmmpio located

more posteriorly than in A. minutus, A. minutissimus, and A.

leucotheae.

Remarks. We followed the same procedures as for

Acarechimys minutus in identifying the original type series

used by Ameghino to describe Stichomys constans. In the

MLP collections, the specimen MLP 15-391 is catalogued

as lectotype and MLP 15-391a, b, and c are catalogued as

syntypes of Acarechimys constans. Based on the MLP cata-

log, we have confirmed that these specimens belong to the

‘old collections’ of the MLP. Patterson stated that this

species was based ‘on a series of incomplete mandibles in

the Museo de La Plata, nos. 15-39, MLP 15-57, MLP 15-

200, MLP 15-346, MLP 15-391 and MLP 15-391a-d (UMS,

pers. comm.). Of these, 15-391 agrees most closely with the

type description and is therefore designated as the lecto-

type’. Thus, it is evident that these fossils were available

to Patterson, who did not hesitate in considering them as

part of Ameghino’s original type series. Additionally, three

specimens figured in Ameghino (1889 Atlas: plate VI, figs.

6–8) housed at the MACN also belong to the original type

series (MACN-A 246 and MACN-A 247). Patterson (UMS,

pers. comm.) stated that the palatal fragment described by

Ameghino as Stichomys constans (MACN-A 246; 1889 Atlas:

plate VI, fig. 8) should be referred to Adelphomys candidus

Ameghino, 1887, an assignation with which we agree.

Patterson (UMS, pers. comm.) and Pascual (1967) stated

that MLP 15-391 was the lectotype of Acarechimys constans.

We agree with this assignation. By default, the remaining

specimens of the original type series constitute the para-

lectotypes. Nevertheless, among the paralectotypes, MLP

15-200 has been lost since December 1978 (information
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provided by the specimen label), and we refer MLP 15-346,

MLP 15-391, and MLP 15-391b to Acarechimys gracilis

based on molar and mandibular morphology (see below).

Patterson (in Patterson and Wood, 1982) ‘provisionally ’

considered Stichomys constans a synonym of Acarechimys

minutissimus. However, this assignation is odd, and we think

it could have been an error, since Patterson in his UMS

considered Acarechimys constans as a valid species (pers.

comm.). Additionally, based on its size and dental mor-

phology, this species has traditionally been considered a

distinct species (Vucetich et al., 1993a, 2010, 2015a; Kra-

marz, 2004; Croft et al., 2011; Arnal, 2012). Recently, Verzi

et al. (2016) erected the new genus Ameghinomys to in-

clude this species (Ameghinomys constans) based on mate-

rials referred to Acarechimys minutus, Acarechimys pulchellus,

Acarechimys constans, and other previously undescribed

specimens. The conclusions of our systematic revision of

Acarechimys differ from those of this publication. Verzi et al.

(2016) associate the palatal fragment labeled as ‘type?’

(MLP 15-410b) of Acarechimys minutus mentioned in the

previous section with the lectotype of Acarechimys constans

(MLP 15-391). They argue that MLP 15-410b is propor-

tionally larger than Acarechimys minutus, that it has a short

mure comparable to the short ectolophid present in lower

molars of Acarechimys constans, and that although Ame-

ghino (1887, 1889) did not mention cranial fragments for

Stichomys constans, he figured one in 1889 (Verzi et al.,

2016). Nevertheless, the mentioned palatal fragment

(Ameghino, 1889; Atlas: plate VI, fig. 8) is MACN-A 246

(Fernicola 2011, p. 52), and not MLP 15-410b as indicated

by Verzi et al. (2016). Ameghino (1889) did provide the

following description for Stichomys constans: [‘la primera

muela superior tiene también tres raíces, como en la especie

anterior (Stichomys regularis); y las cuatro muelas superiores

ocupan un espacio longitudinal de 9 milímetros, como las cu-

atro inferiores’] [‘the first upper molar also has three roots,

as in the preceding species (Stichomys regularis); and the four

upper cheek teeth occupy a longitudinal space of 9 millime-

ters, like the four lowers’] (1889, p. 247). Additionally, MLP

15-410b is considerably smaller than S. constans [M1-3 are

6.85mm long, more than 2mm smaller than the value listed

for Stichomys constans (9mm)]. Lastly, since relatively short

ectolophids are common in small rodents, we do not think

that the superficial resemblance to a ‘short mure’ on the

upper molars (absent on both M2 of MLP 15-410b) can be

used to refer unassociated upper and lower dentitions to

the same species.

Description. As in A. minutus, both tooth rows are parallel to

each other (Fig. 4.1) and are obliquely implanted labially

with respect to the palatal plane. The upper cheek teeth are

tetralophodont and wider than long (Fig. 4.1–2; Tab. 1). All

molars and the DP4 have a subquadrangular occlusal out-

line. The molars have a short anteroloph that does not reach

the paracone (Fig. 4.2), unlike in A. minutus, where it is long

and fused with this crest. The protoloph is oblique anteriorly

and curved. The metaloph is straight, departs from the

junction of the mure and the anterior arm of the hypocone,

and its labial end fuses with the posteroloph, delimiting a

metafossette in juveniles (Fig. 4.2). The anterofossette and

metafossette are equally deep and penetrate the occlusal

surface slightly further than the mesoflexus. The hypoflexus

is the deepest flexus and is posteriorly oriented.

The DP4 has a conspicuous metaloph, unlike in A. minu-

tus, in which it is usually reduced (Fig. 4.2). It is fully mo-

larized.

The description of the skull is based on MPM-PV 15002,

a partial palatal fragment.

The ventral root of the zygoma extends slightly in front

of the DP4 (Fig. 4.1), and its antero-posterior diameter is

similar to its dorso-ventral diameter, as in A. minutus. In

ventral view, the masseteric tuberosity is conspicuous.

Posterior to the masseteric tuberosity is a small foramen of

uncertain homology (Fig. 4.1), as in the type species. On

the dorsal face of the ventral root of the zygoma is a faint

furrow for the passage of the infraorbitalis nerve. In palatal

view, well-developed diastemal furrows are evident that

extend posteriorly to M1 (Fig. 4.1), farther than in A. minutus.

The posterior palatine foramina are conspicuous and located

between the M1s. The posterior nares open opposite the

anterior half of the M2.

The dp4 is the longest tooth (Tab. 1). It has a curved

metalophulid I. A well-developed (MACN-A 4058; MACN-A

4061; MACN-A 4064; MLP 15-391) (Fig. 4.3) or reduced

(MACN-A 247a; MACN-A 4075) metalophulid II extends

postero-lingually from the protoconid. The ectolophid is

oblique and extends posteriorly from the posterior border

of the protoconid. Near its posterior end, a well-developed

mesolophid extends lingually and usually reaches the meta-
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conid (Fig. 4.3), as in A. minutissimus. The hypolophid is

straight or curved and reaches the entoconid. The pos-

terolophid is long, anteriorly concave, and does not contact

the entoconid (Fig. 4.3). The anterofossettid is rounded and

relatively shallow, the metaflexid is narrow, and the pos-

teroflexid is the largest and deepest of the lingual flexids/

fossettids. The hypoflexid is posteriorly oriented and is

deeper than the lingual flexids.

Lower molars have three main crests and a fourth, second

in position, variably developed (Fig. 4.3). The metalophulid I

is curved, unlike in A. minutus and A. minutissimus, where it

is straight. A conspicuous metalophulid II is present in m1

but is reduced or absent on m2–3 (Fig. 4.3). In some cases,

a labio-lingually aligned accessory cusp (Fig. 4.3) and/or a

posterior extension of the metalophulid I is observed. These

two structures are generally reduced or absent in m2–3.

The ectolophid is generally longer than in the remaining

species of the genus. The hypolophid and the posterolophid

of the molars resemble the condition in the dp4. In juveniles,

the hypoflexid is confluent with the posteroflexid (m2–3 in

Fig. 4.3). The antero+mesoflexid is as broad and deep as the

posteroflexid.

Lower incisors are not laterally compressed, unlike in A.

minutus and A. minutissimus. They are long, with their pos-

terior end located at the base of the coronoid process.

The mandible has the mental foramen, when present,

small and located opposite the anterior half of dp4 or

slightly anteriorly (Fig. 4.4). The nmmpio is more poorly de-

veloped than the remaining species, antero-posteriorly

short, and located mainly below m1 (Fig. 4.4), as in A. gra-
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Figure 4. 1–4, Acarechimys constans; 1–2, MPM-PV 15002, palatal fragment with left and right DP4-M2; 2, left DP4-M2 (reversed); 3, MLP
15-391, right dp4-m3 (lectotype); 4, MACN-A 4064, external view of left mandible (reversed); 5–6, Acarechimys gracilis MACN-A 52-128; 5,
right dp4-m3; 6, external view of the right mandible. Anterior to the right, except Figure 4.1. Abbreviations: ac, accessory cusp; Al, anteroloph;
maf,masseteric fossa; med II,metalophulid II; Mel,metaloph; mf,mental foramen; msd,mesolophid; nmmpio, notch for the insertion of the
masseter muscle, pars infraorbitalis; pamd, posterior arm of the metaconid; Prl, protoloph. Scale bars= 2mm.



cilis. The masseteric crest is well-developed and is con-

tinuous with the posterior end of the nmmpio; it extends

laterally as in the remaining species of the genus. The

masseteric fossa is as deep as in A. minutus and A. gracilis;

it is posteriorly positioned, with its anterior border opposite

m2 or the posterior end of m1 (Fig. 4.4). The furrow that

delimits the masseteric fossa antero-dorsally is poorly de-

veloped. The base of the coronoid process extends ante-

riorly to a point between m2 and m3 (Fig. 4.4), unlike in the

remaining species of the genus in which it extends to m2.

The mandibular symphysis extends posteriorly to the level

of m1, and a poorly developed chin is present just anterior

to the anterior part of the dp4.

Acarechimys gracilis (Ameghino, 1891) comb. nov.

Figure 4.5–6

1891. Stichomys gracilis Ameghino, p. 300.
1902. Protacaremys pulchellus Ameghino, p. 112.
2016. Acarechimys pascuali Verzi, Olivares and Morgan, partim., pp.

414-415; 417; 420.

Holotype. MACN-A 4263, left mandible with dp4-m3.

Referred material. (Supplementary appendix 1).

Geographic and stratigraphic occurrence. Chubut and Santa

Cruz provinces. Sarmiento Formation, Colhué Huapi Member,

early Miocene; Santa Cruz Formation, late early Miocene

(Supplementary Appendix 1).

Emended diagnosis. Within the size range of A. constans

and slightly larger than A. minutus. Lower deciduous pre-

molars with well-developed metalophulid II and reduced

mesolophid, unlike remaining species. Lower molars with

metalophulid II poorly developed in m1 and reduced in

m2–3; accessory cusp and posterior arm of the metaconid

present, as in A. minutus. Lower incisors not laterally com-

pressed, as in A. constans. Mandible with the nmmpio and

masseteric fossa located posteriorly, unlike in A. minutus,

A. minutissimus, and A. leucotheae.

Remarks. Stichomys gracilis was originally described by

Ameghino (1891). Patterson (in Patterson and Wood, 1982)

considered S. gracilis to be a junior synonym of Acaremys

minutus, upon which he based the genus Acarechimys

(Patterson and Wood, 1982). Nevertheless, we do not think

that MACN-A 4263 (holotype of S. gracilis) is assignable to

Acarechimys minutus; rather, it is indistinguishable from

MACN-A 52-128, the holotype of Acarechimys pulchellus

(Ameghino, 1902). Thus, Acarechimys pulchellus is a junior

synonym of Stichomys gracilis, and we erect the new combi-

nation Acarechimys gracilis (Ameghino, 1891).

Description. The m2 is the largest tooth in the dental series

(Tab. 1). The dp4 has a curved metalophulid I. The ectolophid

and the metalophulid II extend posteriorly from the proto-

conid. The metalophulid II is conspicuous and postero-lin-

gually oblique, as in A. minutissimus and A. constans (Fig. 4.5).

The mesolophid is reduced to a short spur that extends

from the posterior end of the metalophulid II and delimits a

fossettid (Fig. 4.5). The hypolophid is long and straight. The

posterolophid is long and curved but does not contact the

lingual end of the hypolophid (Fig. 4.5). The hypoflexid is the

deepest flexid and is posteriorly oblique.

The lower molars have three main crests and a fourth,

second in position, variably developed (Fig. 4.5). The metalo-

phulid I is curved, as in A. constans. The metaconid extends

posteriorly to form the posterior arm of the metaconid,

which is well-developed in m1–3 (Fig. 4.5), unlike in A. con-

stans, in which is absent. The metalophulid II is reduced but

more developed in m1 than in m2–3 (Fig. 4.5). An accessory

cusp is present, including in m3, unlike in other species of

the genus (Fig. 4.5). The hypolophid and posterolophid are

as in dp4.

The lower incisors are robust and not laterally com-

pressed. They have a thick enamel layer, a straight lingual

border, and a curved labial one. This tooth is long, as in the

remaining species of the genus, with its posterior end pos-

terior and labial to m3 (Fig. 4.6).

The mandible has a short, concave diastema, as in the

remaining species (Fig. 4.6). The mental foramen is generally

absent, but a very small foramen is present anterior to the

dp4 in MPM-PV 17430. The nmmpio is long, conspicuous,

and mostly located below m1 (Fig. 4.6). The masseteric

crest is well-developed, continuous with the nmmpio, and

projects laterally. The masseteric fossa is slightly deeper

than in A. constans but shallower than in A. minutissimus

(Fig. 4.6). The furrow that delimits the masseteric fossa

antero-dorsally is poorly developed, as in the remaining

species. The coronoid process extends anteriorly to the level

of m2; it is postero-laterally extended and delimits a retro-

molar fossa lateral to m2–3. Its anterior border is straight,

and its dorsal tip is dorsal to the cheek teeth. Posteriorly the

mandibular notch is shallow. Lingually, the mandibular sym-
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physis extends posteriorly to the level of dp4; posteriorly,

the mental process is moderately developed.

Acarechimys leucotheae Vucetich, Dozo, Arnal, Pérez 2015

Figure 5. 1

Type and only material. MPEF-PV 10677, left mandibular

fragment with dp4-m3 and incisor.

Geographic and stratigraphic occurrence. Chubut Province,

Argentina.

Upper levels of Sarmiento Formation at Cabeza Blanca,

late Oligocene; Deseadan SALMA.

Diagnosis [modified from Vucetich et al. (2015a)]. Very

small, within the size range of A. minutissimus. Cheek teeth

brachydont and terraced to a greater degree than in other

species of the genus. Lower molars with three crests plus a

very short metalophulid II and an accessory cusp in m1–2,

as in A. minutus; posterior arm of the metaconid and poste-

rior extension of the metalophulid I absent; posterolophid

more transverse than in the other species, resulting in a

more open posteroflexid. Lower deciduous premolar with

the ectolophid conspicuously separated from the proto-

conid, very oblique, and more perpendicular to the antero-

posterior axis of the tooth than in the other species of the

genus; metalophulid II reduced, as in some specimens of

A. minutus and A. constans. Mandible with the notch for the

insertion of tendon of the masseter medialis pars infraor-

bitalis more oblique than in the remaining species; mental

foramen absent, as in A. minutissimus and A. minutus.

Remarks. This species was recently described by Vucetich et

al. (2015a) based on a single specimen (Fig 5.1). No new

specimens or additional information are available.

Acarechimys minutissimus (Ameghino, 1887)

Figure 5. 2–4

1891. Stichomys diminutus Ameghino, p. 300.
1894. Sciamys tenuissimus Ameghino, p. 324.

Type series. MACN-A 256, left mandible with dp4-m3;

MACN-A 257, left mandible with dp4-m3; MACN-A 258,

right mandible with incisor and dp4-m3; MLP 15-188, left

mandible with dp4-m3.

Lectotype. MLP 15-188 Patterson in Pascual, 1967.
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Figure 5. 1, Acarechimys leucotheae MPEF-PV 10677, left mandible with dp4-m3 (holotype; reversed); 2–4, Acarechimys minutissimus; 2,
MACN-A 4076, right dp4-m3; 3, MACN-A 258, right mandible with dp4-m3 (paralectotype;); 4, MACN-A 4093, left mandible. Anterior to the
right. Abbreviations: ac, accessory cusp; Al, anteroloph; M, metacone; maf, masseteric fossa; med II, metalophulid II; Mel, metaloph; msd,
mesolophid; nmmpio, notch for the insertion of the masseter muscle, pars infraorbitalis; Pa, paracone; Prl, protoloph; Psl, posteroloph. Scale
bars= 1mm.



Paralectotypes. MACN-A 256, MACN-A 257, MACN-A 258.

Referred material. (Supplementary appendix 1).

Geographic and stratigraphic occurrence. Santa Cruz and

Neuquén provinces, Argentina; La Venta, Colombia. Pin-

turas, Santa Cruz, and Collon Curá formations, early

Miocene, late early Miocene, and middle Miocene, ‘Pinturan’

age, Santacrucian and Colloncuran SALMAs; Villavieja For-

mation, middle Miocene, Laventan SALMA (Supplementary

appendix 1).

Emended diagnosis. Very small, within the size range of A.

leucotheae. Cusps conspicuous in young specimens. Lower

deciduous premolar with reduced metalophulid II and well-

developed mesolophid, unlike the remaining species of the

genus. Metalophulid II generally absent in the lower mo-

lars or present in m1 as a bulge into the ectolophid, unlike

in the remaining species of the genus; accessory cusp in

antero+mesoflexid of m1–2 variably present, and posterior

arm of the metaconid and posterior extension of the metalo-

phulid I absent, unlike in A. minutus. Lower incisors large

relative to the mandible size. Mandible with the nmmpio

straight and below dp4-m1, as in A. minutus and A. leu-

cotheae.

Remarks. MLP 15-188 is labeled as the lectotype of Acare-

chimys minutissimus. The MLP collections include several

specimens from the ‘old collections’ referable to A. minu-

tissimus (MLP 15-1, MLP 15-188a, MLP 15-398, MLP 15-

408), but unfortunately the available information does not

indicate whether they were collected by C. Ameghino (as

is the case for A. minutus and A. constans). Patterson (UMS,

pers. comm.) mentioned MLP 15-188 as the type of the

species. Thus, we can infer that only MLP 15-188 was

available to him. Two specimens were figured by Ameghino

(1889; Atlas; plate IV, figs. 24–25). Figure 24 corresponds to

MACN-A 257, but the specimen corresponding to figure 25

could not be found [Fernicola (2011) erroneously stated the

reverse, that the figure 24 specimen could not be found and

that figure 25 specimen is MACN-A 257]. Additionally,

MACN-A 256 and MACN-A 258 are mentioned in Ameghi-

no’s catalog as belonging to the same stock as MACN-A

257. In fact, Ameghino (1889) mentioned that this species

was represented by several mandibles. Thus, we conclude

that four specimens (MLP 15-188, MACN-A 256, MACN-A

257, MACN-A 258) are part of the original type series used

by Ameghino to erect A. minutissimus. 

Patterson (UMS, pers. comm.) and Pascual (1967) de-

termined MLP 15-188 to be the lectotype of the species. As

a consequence, the remaining specimens of the original

species are considered to be paralectotypes.

Description. Upper tooth rows labially obliquely implanted

with respect to the palatal plane, as in A. minutus. Upper

cheek teeth with four crests (Fig. 5.2). The M2 is slightly

larger than DP4 and M1 (Tab. 1). Cusps discernable and

molars slightly terraced.

The upper molars have a subquadrangular occlusal out-

line (Tab. 1) and well-defined paracone and metacone (Fig.

5.2). The protocone area is more rounded than in A. minutus.

The anteroloph is short, unlike in the type species, but an

anterofossette forms with little wear since the paracone

does not extend very far anteriorly (M2; Fig. 5.2). The pro-

toloph is slightly curved. The metaloph is straight and ends

labially in the metacone, which is posteriorly extended and

contacts the relatively short posteroloph. Consequently,

the antero- and posterofossettes are delimited in juvenile

specimens (Fig. 5.2). The paraflexus/fossette is the smallest

and shallowest fossette, and extends across the occlusal

surface as far as the mesoflexus. The hypoflexus is the

deepest flexus and is anteriorly oriented.

The DP4 resembles the molars but differs in its rounded

occlusal outline and in the absence of an anteriorly oriented

paracone. Unlike in A. minutus, the anteroloph is short and

oblique (Fig. 5.2), and in some specimens, the metaloph is

reduced (MACN-A 4145), as in A. minutus.

The upper incisors are oval in section, as in A. minutus.

The enamel is thick, and the anterior face is straight and the

labial face is curved.

The skull description is based on two small, poorly

preserved skull fragments (MACN-A 12683; YPM-PVPU

15178). In the ventral aspect of the skull, the incisive fora-

mina are well-developed, as in A. minutus. Posteriorly, they

are continuous with well-developed diastemal furrows that

extend posteriorly to the anterior border of the DP4s. The

ventral root of the zygoma extends just in front of the DP4,

and its antero-posterior diameter is similar to its dorso-

ventral diameter, as in the type species. The masseteric

tuberosity is well-developed, and the lateral furrow for the

insertion of the lateral masseteric muscle is shallow. Un-

like in A. minutus, there is no foramen of uncertain affinities

posterior to the masseteric tuberosity. On the dorsal face
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of the ventral root of the zygoma is a faint furrow for the

passage of the infraorbital nerve.

Lower cheek teeth in juveniles are terraced with the

metaconid and entoconid higher than the protoconid and

hypoconid, and adults have flat occlusal surfaces. The dp4 of

this species is most variable: it has a curved metalophulid I

whose lingual and labial portions can be separated from

each other (MACN-A 4076; MACN-A 4083). The metalo-

phulid II is usually reduced, as in A. minutus, A. leucotheae,

and some specimens of A. constans (Fig. 5.3), but in some

cases, it reaches the mesolophid. The ectolophid is lingually

concave, and in juveniles (MACN-A 1896; MPM-PV 15098),

as well as in those specimens from the Pinturas Formation,

it is not connected to the protoconid. The mesolophid is al-

ways well-developed, as in A. constans, and reaches the

metaconid to delimit an anterior fossettid (Fig. 5.3). In some

cases, this crest is disconnected from the ectolophid

(MACN-A 4094). The hypolophid is straight or curved, and

reaches the lingual side of the tooth. The posterolophid is

long and curved, unlike in A. leucotheae. The anterofossettid

is rounded and shallow and disappears with the postero-

fossette in adults. The straight mesoflexid and the poste-

riorly oblique hypoflexid are the deepest flexi and remain

open in adults.

The lower molars have three crests. The metalophulid II

is absent or reduced to a minute bulge on m1 (Fig. 5.3). The

metalophulid I is straight, unlike in A. constans and A. gracilis,

with a labio-lingually aligned protoconid and metaconid or

a metaconid that is slightly anterior to the protoconid (Fig.

5.3). The hypolophid and posterolophid are as in the dp4.

Antero+mesoflexid are merged owing to the absence of

metalophulid II (Fig. 5.3). An accessory cusp is usually

present on m1 and m2 (Fig. 5.3). This cusp can be connected

to the metalophulid I by a posterior extension of the latter

(MLP 15-398). The posterior arm of the metaconid is not

present. In some juvenile specimens (MACN-A 4083;

MACN-A 4092; MACN-A 4093; MLP 15-398), the hypoflexid

is united with the posteroflexid. Antero+mesoflexid and

posteroflexid are similar in depth; the hypoflexid is the

deepest flexid and is posteriorly oblique.

Lower incisors are laterally compressed and very large

relative to mandible size (Fig. 5.4). The enamel layer is thick,

and the anterior face is straight and the labial face is curved.

The incisors are long, extending below the m3 and ending

in a bulge on the base of the coronoid process or in a furrow

in broken specimens (Fig. 5.4).

The mandible of this species has a conservative mor-

phology that contrasts with the great variability of the lower

cheek teeth. It is robust, and the diastema is dorsally con-

cave and shorter than the tooth row as in the remaining

Acarechimys species (Fig. 5.4). The mental foramen is nearly

always absent (only on MACN-A 4081 is a very small fora-

men located anterior to the dp4). The nmmpio is straight

and conspicuous, and extends below the dp4-m1 (Fig. 5.4).

The masseteric crest is continuous with the posterior bor-

der of the nmmpio and protrudes laterally. The masse-

teric fossa is deep anteriorly, as in A. minutus (Fig. 5.4). The

furrow that delimits this fossa antero-dorsally is poorly de-

veloped. The base of the coronoid process extends forward

to the level of m2, as in A. minutus and A. gracilis, thereby

delimiting a retromolar fossa lateral to m3. The mandibular

symphysis extends posteriorly to m1, and a moderately

developed chin is present anteriorly, which delimits the

notch for the insertion of the digastric muscle.

Statistical Analysis
We tested for size differences among Acarechimys

species using m1 and m2 length, as these allowed for the

largest sample sizes. ANOVAs of both m1 length (N = 69)

and m2 length (N = 62) were highly significant (p < 0.0001).

Based on Tukey’s HSD (Tab. 2), two subgroups of Acare-

chimys are statistically distinguishable: a group of larger

species consisting of A. constans, A. gracilis, and the sample

from Quebrada Honda (referred here tentatively to A. minu-

tus and A. minutissimus), and a smaller group consisting of

A. leucotheae, A. minutissimus, and A. minutus. These size

groupings are distinct in a bivariate plot of m1 vs. m2 length

(Fig. 6; N = 58).

Two conclusions can be drawn from this analysis. First,

size does not appear to be a useful criterion for distin-

guishing A. minutissimus from A. minutus, even though this

was the main criterion used by Ameghino (1887) for distin-

guishing these species. Although the smallest Acarechimys

specimens do pertain to A. minutissimus, and m1 and m2

lengths are statistically different between these species

(though only at the p < 0.05 to 0.005 level), there is sig-

nificant size overlap between larger specimens of A.

minutissimus and smaller specimens of A. minutus (Fig. 6).
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The single known specimen of A. leucotheae plots very close

to this area of overlap. Acarechimys constans and A. gracilis

show a pattern similar to A. minutissimus and A. minutus but

with even greater size overlap (Fig. 6); the two species show

virtually the same range of values for both m1 and m2

length and cannot be distinguished from one another based

on size alone.

The other noteworthy result of this analysis is that

the specimens in the Acarechimys sample from Quebrada

Honda, tentatively identified as both A. minutus and A.

minutissimus, are significantly larger than Patagonian

specimens referred to these species, and similar in size to A.

constans and A. gracilis (Fig. 6). This suggests that the

Quebrada Honda populations referred to A. minutus and A.

minutissimus evolved in parallel toward larger size in this re-

gion during the late middle Miocene, or that they represent

different species from those from Patagonia. If the first

hypothesis is correct, the differences in size could be the re-

sult of similar responses to a common environmental factor

such as climate or habitat. Body size change in response to

climate has been documented in other extinct species (e.g.,

Gingerich, 2003; Chew, 2015) and climate change has been

proposed to have had a significant effect on the evolution

of body size in North American Cenozoic mammals (Love-

grove and Mowoe, 2013). In this case, it is curious that the

single specimen of Acarechimys from La Venta, Colombia,

here referred to A. minutissimus, is similar in size to Pata-

gonian specimens of this species (m1 length = 1.56 mm;

Walton, 1990, tab. 1). If climate (temperature) were prima-

rily responsible for the larger size of Quebrada Honda

specimens, one might expect a similar pattern at La Venta,

which is the same age as Quebrada Honda and also located

in tropical latitudes. Testing this hypothesis requires

studying additional specimens of Acarechimys collected at

Quebrada Honda since the publication of Croft et al. (2011)
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Figure 6. Bivariate plot showing the relationship between m1 and
m2 length (measured in mm) of the five species of Acarechimys.

TABLE 2 – Results of Tukey’s HSD tests of mean m1 length (to left of diagonal) and mean m2 length (right of diagonal) among Acarechimys samples.
Only p-values for significant differences (p < 0.01) are listed.

A. constans
(N = 11)

A. gracilis
(N = 13)

A. leucotheae
(N = 1)

A. minutissimus
(N = 14)

A. minutus
(N = 9)

Quebrada Honda
(N = 14)

A. constans
(N = 15)

- (none) 0.0170 < 0.0001 < 0.0001 (none)

A. gracilis
(N = 14)

(none) - 0.0143 < 0.0001 < 0.0001 (none)

A. leucotheae
(N = 1)

0.0004 0.0014 - (none) (none) (none)

A. minutissimus
(N = 15)

< 0.0001 < 0.0001 (none) - 0.0346 < 0.0001

A. minutus
(N =11)

< 0.0001 < 0.0001 (none) 0.0042 - 0.0017

Quebrada Honda
(N = 13)

0.0047 (none) 0.0345 < 0.0001 0.0080 n/a

Abbreviations: N = number of specimens.



and incorporating data from ongoing paleoenvironmental

studies at the site (Cadena et al., 2015; Catena et al., 2016).

It should also be noted that three A. minutus specimens from

Patagonia are particularly large and fall within the range of

specimens from Quebrada Honda (the first two are repre-

sented only by m1): MLP 82-XII-1-31 (Santa Cruz Province,

exact provenance unknown), MLP 91-IX-1-200 (Collon Curá

Formation at Cañadón del Tordillo), and MPM-PV 4193

(Puesto La Costa, costal Santa Cruz Province; Fig. 6). Each

of these represents a relatively large individual within an
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Figure 7. Consensus tree of 12 MPTs showing the phylogenetic relationships of Acarechimys species (highlighted in green). Numbers at nodes
separated by slash refer to absolute (anterior) and relative (posterior) Bremer supports values (no number of absolute Bremer supports de-
notes 1). Numbers in circles are nodes: 1- Pan Octodontoidea, 2- Basal octodontoid clade.



otherwise small-bodied population and provides no sys-

tematic explanation for the relatively large size of the Que-

brada Honda sample.

Phylogenetic Analysis
The cladistic analysis resulted in 12 Most Parsimonious

Trees (MPTs) of 798 steps each (Consistency index= 0.318;

Retention index= 0.544) and the best score hit 57 times

out of 1,000. The strict consensus tree (Fig. 7) has a well-

resolved topology. Results are in general agreement with

previous analyses, but minor differences are present with

respect to the relationships of some groups. One inter-

esting aspect is the basal position of Draconomys verai

(early Oligocene of Chubut province, Argentina) within

caviomorphs. The phylogenetic relationships of some

species originally described as basal octodontoids (e.g., D.

verai; Eosallamys simpsoni, Eoespina woodi, and Eosachacui

lavocati from the late Eocene?–early Oligocene of Peru;

Changquin woodi from the late Oligocene of Chubut province;

and Dudumus ruigomezi from the early Miocene of Chubut

province, Argentina) and of those taxa from the late middle

Eocene of Contamana, Peru (Cachiyacuy contamanensis and

Canaanimys maquiensis) are not clear and vary in different

analyses (Antoine et al., 2012; Arnal et al., 2014; Arnal and

Vucetich, 2015). Therefore, the relationships of these

species will be the subject of a future study focused on basal

caviomorphs.

Pan-Octodontoidea (node 1) is characterized by six

synapomorphies [metaloph on DP4 indistinct, probably

fused to the posteroloph (character 13:1); mesostyle on

DP4 indistinct or absent (character 15:0); mesolophule

slightly oblique on M1-M2 (character 42:1); presence of an

anterior flexid in metalophulid I of p4 (character 70:0); short

mesolophid on p4 (character 73:0); nmmpio at the middle

of the mandible high (character111:1)]. Nevertheless, node

1 has a low support (Fig. 7), since most of those characters

are scored in only a few taxa.

Within stem-Octodontoidea, several clades previously

recovered in other analyses are also recovered here. Node 2

(Fig. 7) is the sister-clade to remaining octodontoids and in-

cludes Eosallamys simpsoni, Migraveramus beatus, and seve-

ral other species including the enigmatic Plesiacarechimys

koenigswaldi from the middle Miocene of Neuquén Province

(Argentina). Later-diverging clades include (Eoespina woodi

+ Sallamys? minutus), Acaremyidae, (Caviocricetus lucasi +

Dudumus ruigomezi), and the five species of Acarechimys. The

phylogenetic relationships of crown Octodontoidea (Fig. 7)

should be considered tentative because the taxonomic

sample of this study is not focused on this part of the tree.

Acarechimys is recovered as a monophyletic genus of

stem-octodontoids (Fig. 7) characterized by the presence of

brachydont cheek teeth (character 3:0), the presence of an

accessory cusp on m1–2 (character 97:0), and a groove for

the passage of the nerve infraorbitalis (character 139:1).

Acarechimys minutus, the earliest-diverging species, is

distinguished by a metacone that is slightly lingual to the

paracone on M2 (character 39:1). The clade of Acarechimys

gracilis + A. constans is characterized by a lack of com-

pressed lower incisors (character 101:1) and by having the

nmmpio positioned beneath m1 (character 110:0). Its sis-

ter clade, A. minutissimus + A. leucotheae, is characterized

by the presence of terraced occlusal surfaces in all cheek

teeth (character 9:0) and a deep anterior portion of the mas-

seteric fossa (character 113:2). A striking aspect of these

results is the reacquisition of very low cheek teeth by the

genus (interpreted as a reversal within octodontoids), al-

though such a reversal has never been postulated for

octodontoids. Analyses underway will further test this hy-

pothesis. Lastly, unlike the proposal of Verzi et al. (2016)

Abrocoma cinerea is not directly related to any species of

Acarechimys; rather, it is the earliest-diverging crown-

Octodontoidea.

DISCUSSION AND CONCLUSIONS

The systematic and phylogenetic analyses performed

here allow us to define the content of the Acarechimys group

and to better discriminate the included species. Acarechimys

is characterized by a unique mix of states that are ple-

siomorphic (e.g., low-crowned cheek teeth) and apomorphic

(retention of the deciduous premolar, absence of mental

foramen, presence of an accessory cusp on m1–2, and

presence of a groove for the passage of the nerve infra-

orbitalis) among octodontoids. Additionally, Acarechimys

species differ from each other by the presence/absence of

dental and mandibular structures (Tab. 3). Our statistical

analyses demonstrate that size is not a relevant feature for

distinguishing A. minutus from A. minutissimus. Traditionally,

this was the main feature used for distinguishing species,
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albeit tentatively (Vucetich et al., 1993a), but our metric

analyses demonstrate that there are significant overlaps

in size among specimens referred to these species (see

above; Fig. 5).

The temporal and geographic distributions of Acare-

chimys species suggests that the genus could have evolved

in Patagonia by at least the early late Oligocene (in the

first Patagonian radiation event; Arnal and Vucetich, 2015).
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TABLE 3 – Main dental and mandibular characters of Acarechimys.

A. minutus A. constans A. gracilis A. leucotheae A. minutissimus

dp4

Metalophulid II
Variably-developed
(usually reduced)

Variably-developed
(conspicuous or reduced)

Well-developed Reduced Reduced to a spur

Mesolophid Usually reduced Well-developed Reduced Well-developed Well-developed

m1

Metalophulid II Reduced
Variably developed
(usually conspicuous)

Variably developed Reduced
Reduced to a spur

or absent

Pamd Present Absent Present Absent Absent

Pemed I Variably Present Variably present Variably-developed Absent Absent

Accessory cusp Present Variably present Present Present Present/absent

m2

Metalophulid II Reduced Reduced Reduced Reduced Absent

Pamd Present Absent Present Absent Absent

Pemed I Variably present Variably present Variably present Absent Absent

Accessory cusp Present Variably present Present Present Present/absent

m3

Metalophulid II Absent Reduced Reduced/absent Reduced Absent

Pamd present Absent present Absent Absent

Pemed I Absent absent Variably present Absent Absent

Accessory cusp Absent Variably present Present present Present

Lower incisor

Laterally compress yes no no - yes

Mandible

Anterior border nmmpio Below dp4 Below dp4-m1 Below dp4-m1 Below dp4 Below dp4

Mental foramen Absent Usually absent Usually absent Absent Absent

Abbreviations: see Figure 1.



The geologically oldest species is the minute Acarechimys

leucotheae, which has only been identified at the late

Oligocene (Deseadan SALMA) site of Cabeza Blanca, in

Chubut Province, Argentina (Fig. 2). Cabeza Blanca has pro-

duced the greatest diversity of late Oligocene rodents in

South America, nearly three times as many species as any

other site of this age (Vucetich et al., 2015a). This is likely

due, at least in part, to the large number of rodent speci-

mens that have been collected there and the thorough

taxonomic investigations that have focused on this site (see

Wood and Patterson, 1959; Vucetich et al., 2015a), though

only a single specimen of A. leucotheae has been identified

from the site thus far. This suggests that Acarechimys was

relatively rare at that time, a conjecture that is supported

by the absence of specimens referable to the genus from

La Flecha, the other rich Patagonian locality. Nevertheless,

it is noteworthy that no specimens of Acarechimys have yet

been identified from Salla, Bolivia, which has also produced

a rather diverse and rich fauna of late Oligocene rodents

(Lavocat, 1976; Patterson and Wood, 1982; Vucetich, 1991).

Thus, the present evidence suggests that Acarechimys could

have originated in Patagonia.

Acarechimys apparently continued to be rare prior to the

late early Miocene, as Acarechimys gracilis, from the Colhue-

huapian SALMA of Chubut Province (Fig. 2), is known only

through one specimen, the holotype of Protacaremys pul-

chellus (Ameghino, 1902; Vucetich et al., 2010). Kramarz et

al. (2004) mentioned the presence of Acarechimys for the

Colhuehuapian beds of Chichinales Formation in Río Negro

(Fig. 2), but we have studied this specimen and determined

that it does not belong to Acarechimys. Despite the rich

octodontoid fossil record and the great morphological dis-

parity of this group prior to the late early Miocene,

Acarechimys remained poorly diversified during this inter-

val (about half of Colhuehuapian caviomorphs are octodon-

toids; Vucetich et al., 2010, 2015b).

By the late early Miocene, A. minutissimus is recorded for

the ‘Pinturan’ age of Santa Cruz Province (Fig. 2) (Kramarz,

2004; see Kramarz and Bellosi, 2005 and Perkins et al.,

2012 for a discussion about the overlap of some parts of

the ‘Pinturan’ and Santacrucian levels). The acme of the

genus was during the Santacrucian SALMA (Santa Cruz

Formation), where four of the five recognized species lived

in what is today Argentinean Santa Cruz Province (A. minu-

tus, A. constans, A. gracilis, and A. minutissimus). This great

diversity could partly be attributable to the fact that the

Santa Cruz Formation exposures have a wide distribution

(Fig. 2), and have been broadly prospected since the nine-

teenth century, resulting in an unparalleled collection of

fossils (Ameghino, 1887, 1889; Scott, 1905; Vizcaíno et al.,

2012; Fernicola et al., 2014). Acarechimys has also been re-

covered at other Santacrucian localities in Chile (Flynn et al.,

2002, 2008; Croft et al., 2007), but these materials have not

yet been figured nor described in detail. In general, San-

tacrucian caviomorphs are quite distinct from those of the

Colhuehuapian and also from those of the ‘Pinturan’ age

(Vucetich et al., 2015b), exhibiting a marked tendency to-

ward increased hypsodonty (Kramarz, 2001; Pérez and

Vucetich, 2012; Arnal and Pérez, 2013). This ecological shift

in rodents is generally thought to be a consequence of cli-

matic deterioration in Patagonia between Colhuehuapian

and Santacrucian intervals (Vucetich, 1986; Pérez and

Vucetich, 2012; Arnal and Pérez, 2013). However, the evi-

dence for such deterioration is equivocal. Global tempera-

tures remained relatively stable across this interval (Zachos

et al., 2008), and open habitats were present at least

episodically during both the Colhuehuapian and Santacru-

cian SALMAs (Dunn et al., 2015), though arid-adapted

shrubs only became dominant in Patagonia after the late

Miocene (Palazzesi and Barreda, 2012). Kay et al. (2012) in-

terpreted the paleoenvironment of coastal Santa Cruz as

highly seasonal with a mosaic of vegetation including both

forested and more open areas. It is possible that an in-

crease in exogenous grit, such as volcanic ash, may have

driven the trend toward increased hypsodonty and a re-

placement of caviomorph species across this interval, but it

is difficult to test such a hypothesis at present due to a

paucity of studies that include data from both the Colhue-

huapian and Santacrucian SALMAs. Regardless of the pre-

cise causes of the ecological shifts in other rodents,

Acarechimys is noteworthy in being the only octodontoid

lineage that retained generalized, brachydont cheek teeth

into the late early Miocene in high latitudes.

The Patagonian fossil record is scarce for the middle

Miocene, and known fossil sites have a more northerly lo-

cation compared to the early Miocene (Pascual and Odre-
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man Rivas, 1971; Pascual and Ortiz Jaureguizar, 1990;

Pérez, 2010; Arnal and Pérez, 2013). Rodents are repre-

sented in few Colloncuran localities (Colloncuran SALMA;

earliest middle Miocene) in Neuquén and Río Negro

provinces (e.g., Cañadón del Tordillo and Pilcaniyeu Viejo

respectively; Bondesio et al., 1980; Vucetich et al., 1993a;

Fig. 2). During the Mayoan (latest middle Miocene), rodents

have been reported from several small faunules in western

Chubut and Santa Cruz provinces (Kraglievich, 1930; Bonde-

sio et al., 1980; Vucetich and Pérez, 2011; Pérez et al.,

2016), as well as the locality of El Petiso in Chubut Province,

whose age is estimated to be post-Colloncuran (Villafañe

et al., 2008; Arnal and Pérez, 2013). Among these middle

Miocene localities, Acarechimys has only been identified

at Cañadón del Tordillo and Estancia Collon Curá. In a re-

cent preliminary revision of unpublished caviomorphs of

Cañadón del Tordillo and Estancia Collon Curá, a very high

octodontoid diversity was identified (Vucetich and Arnal,

pers. obs.). However, Acarechimys diversity appears to be

lower than during the Santacrucian. During this time, north-

ern Patagonia experienced a short period of regreening;

forests and more humid conditions are inferred for Cañadón

del Tordillo based on the presence of monkeys and a high

diversity of porcupines (Candela, 2003; Dunn et al., 2015;

Vucetich et al., 2015b), as well as many low-crowned

octodontoids (Vucetich and Arnal, pers. obs.). Few late

Miocene sites are known from Patagonia. These have

yielded only fragmentary remains of rodents and no

octodontoids (Pascual and Bondesio, 1985; Vucetich et al.,

2005; Dozo et al., 2010).

A variety of fossil sites are known from central and

northern Argentina and lower latitudes of the continent

during the Eocene to Miocene interval. Sites of Eocene and

Oligocene age are known from Peru, Bolivia, Brazil, and

Uruguay. In general, the fossil record of these localities

(with the exception of Salla, Bolivia) is very poor, and no

Acarechimys or closely similar taxa have been described

(Lavocat, 1976; Mones and Castiglioni, 1979; Patterson and

Wood, 1982; Vucetich, 1991; Vucetich et al., 1993b; Bond et

al., 1998; Vucetich and Ribeiro, 2003; Frailey and Campbell,

2004; Antoine et al., 2012). An unidentified species of

Acarechimys was mentioned for the late early Miocene of

Chucal, northern Chile (~18° S; Croft et al., 2007), and the

genus has been recorded at the late middle Miocene of La

Venta, Colombia (~3° N; Walton, 1997), Quebrada Honda,

Bolivia (~22° S; Croft et al., 2011), and the Fitzcarrald Arch

in Peruvian Amazonia (~11° S; Tejada-Lara et al., 2015: fig.

9N) (Fig. 2). Other early and middle Miocene localities have

yielded remains of caviomorphs, but there is no record of

Acarechimys (e.g., Madre de Dios Subandean Zone, Peru;

Antoine et al., 2013). For the late Miocene, Campbell et al.

(2006) mentioned the possible presence of Acarechimys in

the Madre de Dios Formation in the Amazonia region, and

Antoine et al. (2016) did the same for the Pebas Formation

of Peru. Based on our firsthand study of the material of the

Madre de Dios Formation and examination of photos of

specimens from the Pebas Formation, we do not believe

Acarechimys occurs at these sites. Instead, the specimens

from the Amazonia region represent a new caviomorph

species that is broadly represented in southwest Amazo-

nia (Brazil and Peru) during the late Miocene (Vucetich et al.,

in prep). The phylogenetic relationships of this new taxon

relative to Acarechimys will be the subject of future research.

Based on available evidence, Acarechimyswas apparently

not present in lower latitudes of the continent (north of 35°

S) before the early Miocene; the factors favoring its dis-

persal after this time remain to be elucidated. The change in

its distribution toward low latitudes after the early middle

Miocene is broadly reminiscent of a pattern of range con-

traction seen in several other groups of mammals including

vermilinguan xenarthrans, platyrrhine primates, and as-

trapothere ungulates (Pascual et al., 1996; Ortiz Jau-

reguizar and Cladera, 2006; Croft et al., 2016), and it raises

the possibility of a common environmental or ecological

cause. Paleoecological studies of Acarechimys are necessary

to provide additional insights into how and why this tiny

caviomorph was able to achieve the widest temporal and

geographic distribution of any caviomorph genus, while

retaining a persistently brachydont dentition.
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