Introduction

Retrotapes, as described and characterized by del Río (1997), is a neoaustal taxon that first appeared in Patagonia and Antarctica during the early Tertiary, with Miocene and Holocene records in southern South America. Del Río (1997) transferred to *Retrotapes* some species previously assigned to *Eurhomalea* Cossmann, restricting *Eurhomalea* to strata younger than Pliocene. After that, some species included in the genus are: *R. ninfasiensis* del Río, 1997 (earliest Late Miocene, Península Valdés, Patagonia); *R. fuegoensis* del Río, 1997 (Late Oligocene-Early Miocene, Tierra del Fuego; del Río, 1997); *R. lenticularis* (Sowerby, 1835) (Pleistocene, Central Chile; Herm, 1969); and *R. exalbidus* (Dillwyn, 1817) (Quaternary, Patagonia and Tierra del Fuego; Feruglio, 1950; Gordillo, 1999; Aguirre and Farinati, 2000). The two last taxa are extant species in South America (Gallardo et al., 2003), with *R. exalbidus* living at present in the Magellan Region along both coasts of southern South America (Carcelles, 1944; Reid and Osorio, 2000).

Based on the fossil record, del Río (1997) concluded that this genus exhibits great adaptability (“plasticity”) and is able to live under warm to temperate-cold conditions. She pointed out that while almost 70% of the earliest Middle Miocene genera became extinct, *Retrotapes* survived under colder conditions after this period.

Carcelles (1944) and Dell (1964) mentioned that current *R. exalbidus* shells are varible in outline. Later, Lomovasky and Morriconi (1999) and Lomovasky (2002) documented the existence of two distinctive shell morphs in living *R. exalbidus* from Ushuaia Bay, on the Beagle Channel. Electrophoretic studies by Gallardo et al. (2003) on *R. exalbidus* and *R. lenticularis* showed that they are allozymically different, indicating that genetic distances are consistent with the morphological and distributional criteria used for species recognition within this genus. However, the two shell morphs from Ushuaia Bay described by Lomovasky (2002) have no genetic basis to substantiate their taxonomic separation. Thus, they appear to represent different age cohorts of *R. exalbidus* (Lomovasky, 2002).

The genus *Retrotapes* is also present in the Pleistocene of Tierra del Fuego. The aim of this paper is to provide an accurate description of this record, taking into account that Pleistocene molluscs represent a connection between the Tertiary fauna that inhabited southern South America and the modern fauna living today in the region.

The fossil material comes from Pleistocene marine terraces exposed along the northeastern coast of the Isla Grande de Tierra del Fuego. Lithostratigraphic units yielding representatives of *Retrotapes* are La Sara (Codignotto and Malumián, 1981), Las Vueltas and La Arcillosa (Bujalesky et al., 2001) formations (figure 1), which represent different Pleistocene interglacial deposits (Bujalesky et al., 2001). Between the confluence of the rivers Chico and Avilés a marine terrace 2.5 km long overlies Tertiary rocks, and in this area the Laguna Arcillosa and the Las Vueltas formations were respectively assigned with doubt to MIS (Marine Isotopic Stage) 11, and to MIS 9 or MIS 7 (sensu Bujalesky et al., 2001). Laguna Arcillosa Formation is a fossil beach mainly composed of coquinoide sands with pebbles, situated 29 m above present sea level. Specimens of *Retrotapes* are associated with *Mytilus edulis chilensis* Hupé, 1854, *Mulinia edulis* (King and Broderip, 1832), *Trophon geversianus* (Pallas, 1774) and *Buccinanops squalidus* (King and Broderip, 1832). The Las Vueltas Formation is situated 25 m above present sea level and *Retrotapes* specimens collected from this unit are mostly broken and eroded, and associated with volutid gastropods. Finally, the La Sara Formation (sensu Codignotto and Malumián, 1981) is a large, elongated gravel deposit (14 km long and 2 km wide) located near Estancia La...
Sara, at 14 m above present sea level. It is attributed to the Late Pleistocene (Codignotto and Malumián, 1981), and it correlates with MIS 5 (Bujalesky et al., 2001). Broken shells and fragments of Retrotapes associated with volutid gastropods have also been collected. Faunal composition, taphonomy and sediments yielding this association resemble those of the Las Vueltas Formation.

Systematic paleontology follows the synoptical classification of fossil and recent Bivalvia by Amler (1999). Specimens described are housed in the Centro de Investigaciones Paleobiológicas (CIPAL), Universidad Nacional de Córdoba, Argentina under the prefix CEGH-UNC.

Systematic Paleontology

Phylum MOLLUSCA Linné, 1758
Class BIVALVIA Linné, 1758
Subclass HETEROCONCHA Hertwig, 1895
Superorder HETERODONTA Neumayr, 1884
Order VENEROIDA Adams and Adams, 1856
Superfamily VENEROIDEA Rafinesque, 1815
Family VENERIDAE Rafinesque, 1815
Subfamily TAPETINAE Adams and Adams, 1857

Genus Retrotapes del Río, 1997

Type species. Retrotapes ninfasiensis del Río, 1997, Puerto Madryn Formation (Late Miocene).

Retrotapes sp.

Figures 2.A-F.

Material. Locality La Sara: CEGH-UNC22118, 22119, 22120; Locality La Arcillosa: CEGH-UNC22121; Locality Las Vueltas: CEGH-UNC22122, 22123, 22124, 22125. Broken specimens and fragments belonging to the Quaternary collection of Tierra del Fuego in the CIPAL: La Sara (27 specimens), Las Vueltas (10); La Arcillosa (15).

Description. Shell large, very thick and solid; outline ovate to subrectangular. Umbo small, anterior. Hinge plate wide with strong cardinal teeth; nymph long; three long cardinal teeth sloping backwards, with a horizontal posterior tooth and an almost vertical anterior tooth; left hinge with median cardinal tooth bifid. Lunule deeply impressed and concave, inclined towards the opposite valve. Pallial sinus short. Anterior adductor muscle more deeply impressed than posterior muscle scar. Sculpture of spaced marginal ridges. Smooth inner ventral margins.

Stratigraphic and geographic distribution. Locality
La Sara (53°30′S, 68°05′W), La Sara Fm. (MIS 5, Late Pleistocene). Locality La Arcillosa (53°34′S, 68°02′W), La Arcillosa Fm. (MIS 11?, Middle Pleistocene). Locality Las Vueltas (53°34′S, 68°03′W), Las Vueltas Fm. (MIS 7 or 9?, Middle Pleistocene). Tierra del Fuego.

Comments. Bujalesky et al. (2001) attributed specimens from Pleistocene marine deposits in Tierra del Fuego to *Eurhomalea exalbida* (i.e. *Retrotapes exalbidus*). However, based on our material, Pleistocene *Retrotapes* sp. is quite different from the living *R. exalbidus*. The material described here mainly differs in shell shape (more rectangular in *R. exalbidus*), and the different development of the cardinal platform (narrower in *R. exalbidus*). Both fossil Holocene and recent *R. exalbidus* specimens from different regions of Patagonia and Tierra del Fuego were compared and show a similar subrectangular outline (figures 2.G-L). One exception is given by one recent specimen of *Retrotapes* collected in Bahía Brown, on the Beagle Channel (figures 2.M-N), which strongly differs from the typical form of *R. exalbidus* in having a more inflated shell. This atypical shell correlates with the second morph of *R. exalbidus* described for living specimens (Lomovasky, 2002). Pleistocene *Retrotapes* sp. reported here is easily separated from the typical *R. exalbidus* (Dillwyn, 1817), but it is more difficult to differentiate in shape from the atypical form (a second morph). However, Pleistocene *Retrotapes* sp. and the recent atypical *R. exalbidus* notably differ in size and thickness. Another additional slight difference is that Pleistocene *Retrotapes* sp. has a more concave and more vertical lunule than the living atypical form. When comparing Pleistocene *Retrotapes* sp. with *R. fuegoensis* del Rio, 1997 (figure 2.O) they differ in having different outlines. *R. fuegoensis* also has a pallial sinus which is tongue-shaped (del Rio, 1997) and deeper than our Pleistocene specimens. Finally, when comparing our material with the type species, the Miocene *R. ninfasiensis* del Rio, 1997 (figures 2.P-Q), both have thick shells with similar outline. However, the Pleistocene *Retrotapes* sp. differs from *R. ninfasiensis* in having a slightly less elongated shell shape, a more conspicuous ligamental nympha, a pallial line which is more separated from the ventral margin (leaving a wider space), and an umbo which is more displaced to the anterior margin than *R. ninfasiensis*.

Thus, taking into account the great similarity of the Pleistocene *Retrotapes* to *R. ninfasiensis*, and considering that our material is not enough to evaluate the existence of morphological variations associated with ontogeny (as living *R. exalbidus* seems to have), it is very difficult to determine if Pleistocene *Retrotapes* shells are more related to the Tertiary *R. ninfasiensis* or to extant *R. exalbidus*. More integrated work between paleontologists and biologists is required to unify criteria used in systematics of Cenozoic molluscs.

Discussion

In Tierra del Fuego, throughout most of the Pleistocene, *Retrotapes* inhabited the marine environments as is indicated by their occurrence in extensive Middle and Late Pleistocene terraces along the north-eastern Atlantic coast of the island.

When comparing the Pleistocene deposits with the Holocene ones, or with the fauna living today in the region, a different faunal composition is noted. The Pleistocene is characterized by the dominance of *Retrotapes*, a typically infaunal taxon of soft substrates. However, during the Holocene, *Retrotapes* was locally replaced by different taxa, mostly epifaunal, suggesting Quaternary environmental changes. The spread of other taxa (e.g. mytilids) and the local extinction of *Retrotapes*, appear to be more related to changes in current regimes (affecting the substrates) than to changes in sea temperature, although warmer conditions at the age of deposition cannot be rejected. The persistence of this genus from at least the Middle to the Late Pleistocene also reflects the ability of the members of this taxon to survive during colder glacial intervals that also occurred during the Middle and Late Pleistocene.

It was also noted that the species richness of the Holocene fauna (Gordillo, 1999) is consistently greater than that from the Pleistocene, which is characterized by very low numbers of species (3 gastropods and 3 bivalves), and large shells of *Retrotapes*. Similar conclusions were reached by Aguirre (2003) who mentioned very low diversity and large shells of the mactrid *Mulinia edulis* (King and Broderip, 1832) in Late Pleistocene deposits from the Golfo San Jorge, further north in Patagonia.

Pleistocene *Retrotapes* shells considered here are thicker and larger than Holocene fossil and living *Retrotapes* spp. shells. Therefore, *Retrotapes*, as a suspension feeder, directly depends on primary productivity for growth (Lomovasky et al., 2002) and these differences in size and thickness may be explained partly by different productivity conditions (i.e. associated with a greater food supply during the Pleistocene compared with the Holocene). However, large size and fast growth rates may also reflect exposure to higher alkalinity and calcium concentrations associated with fully marine environments (Kirby, 2000). At present, the reasons why *Retrotapes* specimens produce large and thick shells during the Pleistocene have not been well understood. For example, it is unknown whether thicker *Retrotapes* shells formed from faster growth or longer life periods. Moreover, ontogen-
genetic variations in shell morphology of living *R. exalbidus* make it difficult to determine whether the size and shape of Pleistocene *Retrotapes* specimens are influenced only by changes in productivity conditions, or if it is also genetically controlled. More palaeontological work, combined with information on living taxa, is necessary for a better understanding of relationships between fossil and living faunas.

Acknowledgments

I wish to express my gratitude to C. Ferrer and G. Alsina for assistance during fieldwork. To R. Brunet for facilitating specimen collection in Puerto Madryn. To T. Sánchez (CIPAL) and B. Waisfeld (CIPAL) for reading the manuscript. To B. Lomovasky (UNMDP) whose constructive comments and English corrections improved the manuscript. This paleontological note has been carried out with the support of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (PEI 6131 to S.G.).

References

King, F.P. and Broderip, W.J. 1832. Description of the Cirripedia, Conchifera and Mollusca, in a collection formed by the officers of HMS Adventure and Beagle employed between the years 1826 and 1830 in surveying the southern coasts of South America including the Straits of Magalhaens and the Coast of Tierra del Fuego. *Zoological Journal* 5: 332-349.

AGRADECIMIENTO A LOS REVISORES

El Comité Editor de la Asociación Paleontológica Argentina agradece especialmente por su colaboración en las tareas de revisión durante el año 2006 a los siguientes investigadores:

G. L. ALBANESI (Museo de Paleontología, Córdoba)
R. L. ANSTYE (Michigan State University, EE.UU.)
A. BACHMAN (Universidad de Buenos Aires, Cdad. Autónoma de Buenos Aires)
S. BALLENT (Universidad Nacional de La Plata, Buenos Aires)
M. BAMFORD (University of Witswatersrand, Sudáfrica).
R. BARON-SZABO (Smithsonian Institution, EE.UU.)
A. BERI (Facultad de Ciencias, Uruguay).
S. BERTELLI (San Diego State University, EEUU)
A. BEU (Wellington, Nueva Zelanda)
R. BOBE QUINTEROS (State University of New York, EE.UU)
D. BOLTOVSKY (Universidad de Buenos Aires, Cdad. Autónoma de Buenos Aires)
M. BREAA (CICYTTP, Diamante, Entre Ríos).
C. BUTTLER (National Museum Wales, Reino Unido)
S. CAIRNS (Smithsonian Institution, EE.UU.)
D. CANTRILL (Swedish Museum of Natural History, Suecia).
A. CARRERO (Universidad Autónoma de México, México)
S. CASADIO (Universidad Nacional de La Pampa, La Pampa)
E. CLARKSON (University of Edinburgh, Escocia)
A. CLAYTON (Trinity College, Irlanda).
S. COELHO RODRÍGUEZ (Universidade do Sao Paulo, Brasil)
J. C. COIMBRA (Universidade Federal do Rio Grande do Sul, Brasil)
R. CORIA (Museo Carmen Funes, Neuquén)
D. CROFT (Case Western Reserve University, EE.UU.)
K. CURRIE ROGERS (Science Museum of Minnesota, EE.UU.)
F. T. FÜRSICH (Universität Wurzburg, Alemania)
A. FORASIEPI (Museo Argentino de Cs. Naturales, Cdad. Autónoma de Buenos Aires)
A. FERRETTI (Museo di Paleobiologia e dellOrto Botánico, Italia).
A. FORASIEPI (Museo Argentino de Cs. Naturales, Cdad. Autónoma de Buenos Aires)
F. T. FÜRSICH (Universität Wurzburg, Alemania)
A. GANDOLFO (Cornell University, EE.UU.)
D. GARCIA-BELLIDO CAPDEVILA (Universidad Complutense, España).
J. GENISE (Museo Paleontológico Egidio Feruglio, Chubut)
F. J. GOIN (Universidad Nacional de La Plata, Buenos Aires)
M. GRIFFIN (Universidad Nacional de La Pampa, La Pampa)
F. HINOJOSA(Universidad de Chile, Santiago de Chile).
C. JARAMILLO (Smithsonian Tropical Research Institute, Panamá)
H. KLINGER (South African Museum, Sudáfrica)
S. LANES (México).
D. LAZO (Universidad de Buenos Aires, Ciudad Aut. de Buenos Aires)
O. LEHNERT (Universität Erlangen, Alemania)
T. MANERA DE BIANCO (Universidad Nacional del Sur, Buenos Aires)
A. MARINO DE REMES-LENICOV (Universidad Nacional de La Plata, Buenos Aires)
S. MARTINEZ (Universidad de la República, Uruguay)
E. MAYORAL (Universidad de Huelva, España)
G. McDONALD (National Park Service Geologic Resource Division, EE.UU.)
S. MIQUEL (Museo Argentino de Cs. Naturales, Cdad. Autónoma de Buenos Aires)
A. MONGES (Instituto Félix de Azara, Uruguay)
J. MUZON (Universidad Nacional de La Plata, Buenos Aires)
A. NEL (Muséum National d'Histoire Naturelle de Paris, Francia)
H. NISHIDA (Chuo University, Japón).
L. O'DOGHERTY (Universidad de Cádiz, España)
E. OLIVERO (Centro Austral de Investigaciones Científicas, Ushuaia)
G. ORTEGA (Universidad Nacional de Salta, Salta)
S. PEREA (Facultad de Ciencias, Uruguay)
M. PHILLIE (Universite Claude-Bernard, Lyon, Francia).
D. POL (Museo Paleontológico Egidio Feruglio, Chubut)
C. PONS DA SILVA (Universidade Luterana do Brasil)
I. POOLE (Universiteit Utrecht, Holanda).
M. PRÂMPARO (IANIGLIA/CRICYT, Mendoza).
M. QUATTROCCHIO (Universidad Nacional del Sur, Buenos Aires).
D. RAMOS (Universidad de Buenos Aires, Buenos Aires)
O. RAHUHT (Museum für Naturkunde der Humboldt Universität, Alemania).
M. A. REGUERO (Universidad Nacional de La Plata, Buenos Aires)
G. RETALLACK (Oregon University, EE.UU.)
J. B. RIDING (British Geological Survey, Nottingham, Inglaterra)
C. RUBINSTEIN (IANIGLIA/CRICYT, Mendoza).
J. SANDOVAL GABARRÓN (Universidad de Jaen, España)
G. SARMIENTO (Universidad Complutense, España).
G. J. SCIALLATO YANE (Universidad Nacional de La Plata, Buenos Aires)
T. SERVAIS (USTL, Francia).
M. SIMOES (Universidade Estadual Paulista, Brasil)
M. STUCHCI (Universidad Nacional de San Marcos, Perú)
A. TABOADA (Universidad Nacional de la Patagonia, Chubut).
H. TONG (Universidad de París, Francia)
E. P. TONNI (Universidad Nacional de La Plata, Buenos Aires)
B. TORO (CRICYT, Mendoza).
D. VERZI (Universidad Nacional de La Plata, Buenos Aires)
L. VILLAR de SEOANE (Museo Argentino de Cs. Naturales, Cdad. Autónoma de Buenos Aires)
E. VILLAS (Universidad de Zaragoza, España).
S. F. VIZCAÍNO (Universidad Nacional de La Plata, Buenos Aires)
W. VOLKHEIMER (IANIGLIA/CRICYT, Mendoza).
N. VON ELLENRIEDER (Universidad Nacional de Salta, Salta)
B. WAISFIELD (Centro de Investigaciones Paleobiológicas, Córdoba)
T. WALLER (Smithsonian Institute, EE.UU.)
R. WHATLEY (University of Wales, Reino Unido)
J. WILSON (University of Michigan, EE.UU.)
E. YOCHELSON (National Museum of Natural History, EE.UU.)
J. C. COIMBRA (Universidade Federal do Rio Grande do Sul, Brasil)
G. OLIVARES (Museo de Paleontología, Córdoba)
G. ORTEGA (Universidad Nacional de Salta, Salta)
W. VOLKHEIMER (IANIGLIA/CRICYT, Mendoza).
A. M. ZAVATTIERI (IANIGLIA/CRICYT, Mendoza).